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Translator's Preface 

Alain Badiou's Number and Numbers, first published two years after 
his Being and Event, is far from being the special ist work its title 
might suggest. In fact, it recapitulates and deepens Being and Event's 
explosion of the pretexts upon which the 'phi losophy of mathematics' 
is reduced to a theoretical ghetto; and their kinship to those reaction­
ary modes of thought that systematical ly obscure the most pressing 
questions for contemporary phi losophy.  Neither does Number and 
Numbers balk at suggesting that even the greatest efforts on the part 
of number-theorists themselves have fal len short of the properly 
radical import of the question of number. Badiou's aston ishing analy­
ses in the h istorical section of the book uncover the inextricable bond 
between phi losophical assumptions and mathematical approaches to 
the problem in these supposedly 'merely technical '  works. The aim 
of Number and Numbers, then, is certainly not to mould the unwil l ­
ing reader into a calculating machine, or a 'phi losopher of mathemat­
ics ' :  its exhortation is that we (mathematic ians, phi losophers, subjects 
under Capita l )  systematical ly think number out of the technical , 
procedural containment of which its quotidian tyranny, and the 
abysmal fear it strikes into the heart of the non-mathematician, are 
but symptoms. Symptoms, needless to say, whose expression with in 
the situation of philosophy is a pronounced distaste for number-as­
philosopheme - whence its recognisable absence in much 'continental 
philosophy', except where it is pi l loried as the very nemesis of the 
ontological vocation. So if the 'return of the numerical repressed' 
proposed here will, by definition, excite a symptomatic resistance, for 
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Badiou it alone can clear the way for the proper task of phi losophy; 
as a working-through of the mathematical ontology presented in 
Being and Eve1Zt, Number and Numbers is a thorough conceptual 
apprenticeship preparatory to the thinking of the event. 

For the great thinkers of number-theory at the end of the nine­
teenth century, the way to an ontological understanding of number 
was obscured by calculatory and operational aspects . Today, accord­
ing to Badiou, the pol itical domination of number under capitalism 
demands that the project be taken up anew: only if contemporary 
phi losophy rigorously thinks through number can it hope to cut 
through the apparently dense and impenetrable capital ist fabric of 
numerical relations, to think the event that can 'subtract' the subject 
from that 'ontic' skein without recourse to an anti-mathematical 
romanticism. 

Whilst this doubtless demands 'one more effort' on the part of the 
non-mathematician, it would be a peevish student of philosophy who, 
understanding the stakes and contemplating the conceptual vista 
opened up, saw this as an unreasonable demand - especial ly when 
Badiou offers to those lacking in mathematical knowledge the rare 
privi lege of taking a meticulously navigated conceptual shortcut to 
the heart of the matter. 

Badiou's remarkable book comprises a number of different works 
- a radical phi losophical treatise, a contribution to number-theory, a 
document in the history of mathematics, a congen ial textbook and a 
subtle and subversive exercise in political theory - whose intricate 
interdependencies defy any order of priority. The translator's task is 
to reproduce, with a foreign tongue, that unique voice that can 
compel us to 'count as one' these disparate figures. In negotiating this 
chal lenge, I have sought to prioritise clarity over adherence to any 
rigid scheme of translation, except where mathematical terminology 
demands consistent usage, or where an orthodoxy is clearly already 
in force within extant translations of Badiou's work. In the latter case, 
my references have been Ol iver Feltham's landmark translation of 
Being and Event, I with which I have sought to harmon ise key terms, 
Peter Hal lward 's invaluable A Subject to Truth/ and Ray Brassier 
and Alberto Toscano's col lection of Badiou's Theoretical Writings.3 
Apart from these, in translating chapters 2 and 3 I referred closely 
to Sam Gi l lespie and Justin Clemens' translation in UMBR(a ) ,  Science 
and Truth (2000). Finally, wh ilst seeking also to maintain continuity 
with long-standing English translations of number-theoretical works, 
some classics in thei r own right, occasionally the rigour of Badiou's 
thinking has demanded a re-evaluation of their chosen translations 
for key terms.4 Translators also find themselves obliged to arbitrate 
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between a fidelity to Badiou 's in many ways admirable indi fference 
to the pedantic apparatus of scholarly citation, and the temptation 
to pin down the al lusions and quotations distributed throughout his  
work. Badiou 's selection of texts is so discerning, however, that it i s  
hardly a chore to return to them. Having thus had frequent recourse 
to the texts touched on in Number and Numbers ( particularly in the 
first, h istorical part ) ,  I have seen no reason not to add citations where 
appropriate. 

One presumes that those self-conscious styles of phi losophical 
writing that necessitate laboured circumlocutions or terminological 
preciosity on the part of a translator would for Badiou fal l  under the 
sign of 'modern sophistry ' ,  taken to task herein, as elsewhere in his 
work. Nevertheless, the aspiration to universal conceptual  transpar­
ency does not preclude consideration of Badiou as stylist: firstly, as 
Oliver Feltham has remarked, Badiou's sentences utilise subject/verb 
order in a characteristic way, and I have retained his tensi le syntax 
whenever doing so does not jeopardise comprehension in translation . 
Perhaps just as importantly, Badiou does not achieve the deft and 
good-humoured development of such extremely rich and complex 
conceptual structures as are found in Number and Numbers without 
a generous and search ing labour on behalf of the reader, not to 
mention a talent for suspense. Although the later sections of Number 
and Numbers may seem daunting, I hope to have reproduced Badiou's 
confident, meticulous, but never stuffy mode of exposition so as to 
ease the way as much as possible. In fact, in contrast to his  own 
occasionally chilly edicts, I would venture to suggest that here, ' in his 
element', Badiou al lows himself a certain enthusiasm. One certa inly 
does not accompany him on this odyssey without also developing a 
taste for the 'bitter joy' of Number. 

This translation slowly came to fruition on the basis of a somewhat 
impulsive decision; it may not have survived to completion without 
the enthusiasm and aid of an internationally dispersed group of 
friends and acquaintances, actual and virtual ,  with whom I shared 
the work in progress. I would like to extend my thanks to those who 
helped by pointing out errors and offering advice on the evolving 
manuscript: Anindya Bhattacharyya, Ray Brassier, Michael Carr, 
Howard Caygil l ,  Thomas Duzer, Zachary L. Fraser, Peter Hallward, 
Armelle Menard Seymour, Reza Negarestani ,  Robin Newton, Nina 
Power, Manuela Tecusan, Alberto Toscano, Keith Tilford, David 
Sneek, and Damian Veal .  My thanks also to Alain Badiou for his 
generous help and encouragement, and to the Institution and Staff of 
the Bodleian, Taylor Institution, and Radcliffe Science Libraries in 
Oxford. Part of my work on the translation was undertaken whi lst 
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in receipt of a studentship from the Centre for Research in Modern 
European Philosophy at Middlesex University, London. 

My greatest debt of gratitude is to Ruth, without whose love and 
understanding my battles with incomprehension could not even be 
staged; and to Donald, a great inspiration, for whom the infinite joys 
of number sti l l l ie ahead.  

Robin Mackay 



o 

Number Must Be Thought 

0. 1 .  A paradox: we l ive in the era of number's despotism; thought 
yields to the law of denumerable multipl icities; and yet ( unless perhaps 
this very default, this fai l ing, is only the obscure obverse of a concept­
less submission ) we have at our disposal no recent, active idea of 
what number is .  An immense effort has been made on this point, but 
its labours were essential ly over by the beginning of the twentieth 
century: they are those of Dedekind, Frege, Cantor, and Peano. The 
factual impact of number only escorts a s i lence of the concept. How 
can we grasp today the question posed by Dedekind in his  1888 
treatise, Was sind und was sollen die Zahlen?l We know very well 
what numbers are for: they serve, strictly speaking, for everyth ing, 
they provide a norm for All .  But we sti l l  don't know what they are, 
or else we repeat what the great thinkers of the late nineteenth 
century - anticipating, no doubt, the extent of their future jurisdiction 
- said they were. 

0.2. That number must rule, that the imperative must be: 'count ! '  -
who doubts this today?  And not in the sense of that maxim which, 
as Dedekind knew, demands the use of the original Greek when 
retraced: &d 0 av8Qu)3to; &QL8�11'tL�EL2 - because it prescribes, for 
thought, its singular condition in the matheme. For, under the current 
empire of number, it is not a question of thought, but of real ities. 

0.3. Firstly, number governs our conception of the political ,  with 
the currency - consensual, though it enfeebles every politics of the 
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thinkable - of suffrage, of opin ion polls, of the majority . Every 'politi­
cal '  convocation , whether general or local, in poll ing-booth or parlia­
ment, municipal or international ,  is settled with a count. And every 
opinion is gauged by the incessant enumeration of the fa ithful (even 
if such an enumeration makes of every fidelity an infidelity ) .  What 
counts - in the sense of what is valued - is that which is counted. 
Conversely, everything that can be numbered must be valued. 'Politi­
cal Science' refines numbers into sub-numbers, compares sequences 
of numbers, its only object being shifts in voting patterns - that is, 
changes, usually minute, in the tabulation of numbers. Political 
'thought' is a numerical exegesis . 

0.4. Number governs the quasi-total ity of the 'human sciences' 
(a lthough this euphemism can barely disguise the fact that what is 
cal led 'science' here is a technical apparatus whose pragmatic basis 
is governmental ) .  Statistics invades the entire domain of these disci­
plines . The bureaucratisation of knowledges is above all an infinite 
excrescence of numbering. 

At the beginning of the twentieth century, sociology unveiled its 
proper dignity - its audacity, even - in the wil l  to submit the figure 
of communitarian bonds to number. It sought to extend to the social 
body and to representation the Gal ilean processes of l iteralisation 
and mathematisation. But u ltimately it succumbed to an anarchic 
development of this enterprise. It is now replete with pitiful enumera­
tions that serve only to validate the obvious or to establish parlia­
mentary opportunities. 

History has drawn massively upon statistical technique and is -
even, in fact above al l ,  under the auspices of academic Marxism -
becoming a diachronic sociology . It has lost that which alone had 
characterised it, s ince the Greek and Latin h istorians, as a discipline 
of thought: its conscious subordination to the real of politics. Even 
when it passes through the different phases of reaction to number -
economism, sociologism - it does so only to fal l  into their simple 
inverse: biography, h istoricising psychologism. 

And medicine itself, apart from its pure and simple reduction to its 
scientific Other (molecular biology) ,  is a disorderly accumulation of 
empirical facts, a huge web of blindly tested numerical correlations. 

These are ' sciences' of men made into numbers , to the saturation 
point of a l l  possible correspondences between these numbers and 
other numbers, whatever they might be. 

0 .5 .  Number governs cultural representations . Of  course, there is 
television, viewing figures, advertising. But that's not the most 
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important thing. It is in its very essence that the cultural fabric is 
woven by number alone. A 'cultural fact' is  a numerical fact. And, 
conversely, whatever produces number can be cultura l ly located; that 
which has no number wil l  have no name either. Art, which deals with 
number only in so far as there is a thinking of number, is a culturally 
unpronounceable word. 

0.6. Obviously, number governs the economy; and there, without a 
doubt, we find what Louis Althusser would have called the 'determi­
nation in the last instance' of its supremacy. The ideology of modern 
parl iamentary societies, if they have one, is not humanism, law, or 
the subject. It is number, the countable, countabil ity. Every citizen is 
expected to be cognisant of foreign trade figures, of the flexibi l ity of 
the exchange rate, of fluctuations in stock prices. These figures are 
presented as the real to which other figures refer: governmental 
figures, votes and opinion polls. Our so-cal led 'situation ' is the inter­
section of economic numerical ity and the numerical ity of opinion. 
France (or any other nation ) can only be represented on the balance­
sheet of an import-export business. The only image of a country is 
this inextricable heap of numbers in which, we are told, its power is 
vested, and which, we hope, is deemed worthy by those who record 
its mood. 

0.7. Number informs our souls. What is it to exist, if  not to give a 
favourable account of oneself? In America, one starts by saying how 
much one earns, an identification that is at least honest. Our old 
country is more cunning. But sti l l ,  you don't have to look far to dis­
cover numerical topics that everyone can identify with. No one can 
present themselves as an individual without stating in what way they 
count, for whom or for what they are really counted. Our soul has 
the cold transparency of the figures in which it is resolved. 

0.8. Marx: 'the icy water of egotistical calculation' . 3 And how! To 
the point where the Ego of egoism is but a numerical web, so that 
the 'egotistical calculation' becomes the cipher of a cipher. 

0.9. But we don't know what a number is, so we don't know what 
we are. 

0. 10. Must we stop with Frege, Dedekind, Cantor or Peano?  Hasn't 
anything happened in the thinking of number? Is there only the 
exorbitant extent of its social and subjective reign ? And what sort 
of innocent culpability can be attributed to these thinkers ? To what 
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extent does their idea of number prefigure this anarchic reign ? Did 
they think number, or the future of general ised numerical ity ? Isn't 
another idea of number necessary, in  order for us to turn thought 
back against the despotism of number, in order that the Subject might 
be subtracted from it ? And has mathematics simply stood by silently 
during the comprehensive social integration of number, over which 
it formerly had monopoly ? This is what I wish to examine. 



I 

Genealogies: Frege, Dedekind, 
Peano, Cantor 





I 

Greek Number and 
Modern Number 

1 . 1 .  The Greek thinkers of number related it back to the One, which, 
as we can sti l l  see in Euclid's Elements , 1 was considered not to be a 
number. From the supra-numeric being of the One, unity is derived. 
And a number is a col lection of units ,  an addition.  Underlying this 
conception is a problematic that stretches from the Eleatics through 
to the Neoplatonists: that of the procession of the Multiple from the 
One. Number is the schema of this procession. 

1 .2.  The modern collapse of the Greek thinking of number proceeds 
from three fundamental causes. 

The first is the irruption of the problem of the infinite - ineluctable 
from the moment when, with differential calcu lus, we deal with 
the real ity of series of numbers which, a lthough we may consider 
their l imit, cannot be assigned any terminus. How can the l imit of 
such a series be thought as number through the sole concept of 
a collection of units ? A series tends towards a l imit: it is not the 
addition of its terms or its units. It cannot be thought as a procession 
of the One. 

The second cause is that, if  the entire edifice of number is sup­
ported by the being of the One, which is itsel f  beyond being, it is 
impossible to introduce, without some radical subversion, that other 
principle - that ontological stopping point of number - which is zero, 
or the void. It could be, certa inly - and Neoplatonist speculation 
appeals to such a thesis - that the ineffable and archi-transcendent 
character of the One can be marked by zero. But then the problem 
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comes back to numerical one: how to number un ity, if the One that 
supports it is void ? Th is problem is so complex that, as we shall see, 
it remains today the key to a modern thinking of number. 

The third reason, and the most contemporary one, is the pure and 
simple dislocation of the idea of a being of the One. We find ourselves 
under the j urisdiction of an epoch that obliges us to hold that being 
is essential ly multiple. Consequently, number cannot proceed from 
the supposit ion of a transcendent being of the One. 

1 . 3 .  The modern thinking of number thus found itself compel led to 
forge a mathematics subtracted from this supposition. In so doing, it 
took three different paths :  

Frege's approach, and that of Russell (which we wi l l  call, for 
brevity, the logicist approach) ,  seeks to 'extract' number from a pure 
consideration of the laws of thought itsel f. Number, according to this 
point of view, is a universal trait2 of the concept, deducible from 
absolutely original principles ( principles without which thought in 
genera l would be impossible ) .  

Peano's and  Hi lbert's approach ( let's cal l  th is the formalist 
approach ) construes the numerical field as an operational field, on 
the basis of certain singular axioms. This time, number occupies no 
particular position as regards the laws of thought. It is a system of 
rule-governed operations, specified in Peano's axioms by way of a 
translucid notational practice, entirely transparent to the material 
gaze. The space of numerical signs is simply the most 'originary' of 
mathematics proper ( preceded on ly by purely logical calculations) .  
We might say that here the concept of number is entirely mathema­
tised, in the sense that it is conceived as existing only in the course 
of its usage: the essence of number is calculation . 

The approach of Dedek ind and Cantor, and then of Zermelo, von 
Neumann and Godel (which we shal l  cal l the set-theoretical or 'pla­
tonising' approach)  determines number as a particular case of the 
hierarchy of sets . The fulcrum, absolutely antecedent to al l  construc­
tion, is the empty set; and 'at the other end' ,  so to speak, nothing 
prevents the examination of infinite numbers. The concept of number 
is thus referred back to an ontology of the pure multiple, whose great 
Ideas are the classical axioms of set theory. In this context, 'being a 
number' is a particular predicate, the decision to consider as such 
certain classes of sets (the ordinals, or the cardinals, or the elements 
of the continuum, etc . )  with certain distinctive properties. The essence 
of number is that it is a pure multiple endowed with certain proper­
ties relating to its internal order. Number is, before being made 
avai lable for calculation (operations wil l  be defined 'on' sets of 
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pre-existing numbers ) .  Here we are dealing with an ontologisation of 
number. 

1 .4. My own approach will be as fol lows : 

(a )  The logicist perspective must be abandoned for reasons of inter­
nal consistency: it cannot satisfy the requirements of thought, 
and especial ly of phi losophical thought. 

(b )  The axiomatic, or operational, thesis is the thesis most 'prone' 
to the ideological social isation of number: it circumscribes the 
question of a thinking of number as such with in an u ltimately 
technical project. 

(c) The set-theoretical thesis is the strongest. Even so, we must draw 
far more radical consequences than those that have prevai led up 
to the present. This book tries to fol low the thread of these 
conseq uences. 

1 . 5 .  Whence my plan: To examine the theses of Frege, Dedekind 
and Peano.  To establish myself within the set-theoretica l  conception. 
To radicalise it. To demonstrate ( a  most important point) that 
in the framework of this radica l isation we wil l  rediscover also 
( but not only) 'our' famil iar numbers: whole numbers, rational  
numbers, real numbers, al l ,  finally, thought outside of ordinary 
operational manipulations, as subspecies of a unique concept of 
number, itself statutorily inscribed within the ontology of the pure 
multiple. 

1 .6. Mathematics has already proposed this reinterpretation, as 
might be expected, but on ly in a recessive corner of itsel f, bl ind to 
the essence of its own thought: the theory of surreal numbers, invented 
at the beginning of the 1970s by J. H. Conway ( On Numbers and 
Games, 1976),3 taken up firstly by D.  E. Knuth (Surreal Numbers, 
1974),4 and then by Harry Gonshor in his canonical book (An Intro­
duction to the Theory of Surreal Numbers, 1986).5 Any interest we 
might have in the technical detai ls of this theory wil l  be here strictly 
subordinated to the matter in hand: establishing a thinking of number 
that, by fixing the latter's status as a form of the thinking of Being, 
can free us from it sufficiently for an event, always trans-numeric, to 
summon us, whether this event be political ,  artistic, scientific or 
amorous. Limiting the glory of number to the important, but not 
exclusive, glory of Being, and thereby demonstrating that what pro­
ceeds from an event in terms of truth-fidelity can never be, has never 
been, counted. 
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1 . 7. None of the modern thinkers of number ( I  understand by this, 
I repeat, those who, between Bolzano and Godel, tried to pin 
down the idea of number at the juncture of phi losophy and the 
logico-mathematica l )  have been able to offer a unified concept 
of number. Customarily we speak of 'number' with respect to 
natural whole numbers,6 'relative' ( positive and negative ) whole 
numbers, rational numbers (the ' fractions ' ) ,  real numbers ( those 
that number the l inear continuum) and, finally, complex numbers 
and quaternions. We also speak of number in a more directly set­
theoretical sense when designating types of well-orderedness (the 
ordinals)  and pure quantities of any multiple whatsoever, including 
infinite quantities ( the cardinals ) .  We might expect that a concept 
of number would subsume all of these cases, or at least the more 
'classical '  among them, that is to say, the whole natural numbers (the 
most obvious schema of discrete 'stepwise' enumeration) and the real 
numbers ( the schema of the continuum) .  But this is not at al l  
the case. 

1 . 8.  The Greeks clearly reserved the concept of number for whole 
numbers, which was quite in keeping with their conception of the 
composition of number on the basis of the One, s ince only natural 
whole numbers can be represented as col lections of units. To treat of 
the continuum, they used geometrica l  denominations, such as the 
relations between sizes or measurements. So their powerful concep­
tion was marked through and through by that division of mathemati­
cal discipl ines on the basis of whether they treat of one or the other 
of what were held by the Greeks to be the two possible types of 
object: numbers ( from which arithmetic proceeds ) and figures ( from 
which, geometry ) .  This division refers, it seems to me, to the two 
orientations whose unity is dia lectical ly effectuated by effective, 
or materialist, thought: the algebraic orientation, which works by 
composing, connecting, combining elements; and the topological 
orientation, which works by perceiving proximities, contours and 
approximations, and whose point of departure is not elementary 
belongings but inclusion, the part, the subset.7 This division is sti l l  
well-founded. Within the discipl ine of mathematics itself, the two 
major divisions of Bourbaki 's  great treatise, once the general onto­
logical framework of set theory is set out, deal with 'algebraic struc­
tures' and 'topological structures ' .  8 And the val idity of this arrangement 
subtends al l  dialectical thought. 

1 .9. It is nevertheless clear that, ever since the seventeenth century, 
it has no longer been possible to place any sufficiently sophisticated 
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mathematical concept exclusively on one side of the opposition arith­
metic/geometry. The triple chal lenge of the infinite, of zero and of 
the termination of the idea of the One disperses the idea of number, 
shreds it into a refined dialectic of geometry and arithmetic, of the 
topological and the algebraic. Cartesian ana lytic geometry radical ly 
subverts the distinction from the very outset, and what we know 
today as 'number-theory' had to cal l  on the most complex resources 
of 'geometry' ,  in the extremely broad sense in which the latter has 
been understood in recent decades . Moderns therefore can no longer 
accept the concept of number as the obj ect whose provenance is 
foundational (the idea of the One) and whose domain is prescribed 
(arithmetic ) .  'Number' is said in many senses . But wh ich of these 
senses constitutes a concept, al lowing something singular to be 
proposed to thought under this name? 

1 . 10. The response to this question, in the work of the thinkers I 
have mentioned, is a ltogether ambiguous and exhibits no unanimity 
whatsoever. Dedekind, for example, can legitimately be named as the 
first one to have, with the notion of the cut, convincingly 'generated' 
the real numbers from the rationals . 9  But when he poses the question:  
'What are numbers ? '  he responds with a general theory of ordinals 
which certa inly, as a particular case, might found the status of whole 
numbers, but which cannot be applied directly to rea l  numbers.1O In 
which case, what gives us the right to say that rea l numbers are 
'numbers ' ?  Similarly, in The Foundations of Arithmetic" Frege offers 
a penetrating critique of a l l  previous definitions ( including the Greek 
definition of number as a 'set of units')'z and proposes a concept of 
'cardinal number' that in effect subsumes - on the basis of certa in 
arguable premises, to which I shall later return - cardinals in the set­
theoretica l sense, of which natural whole numbers represent the finite 
case. But at the same time he excludes ordinals, to say nothing of 
rational numbers, rea l numbers or complex numbers. To use one of 
his favourite expressions, such numbers do not ' fa l l  under the 
[Fregean] concept' of number. Finally, it is clear that Peano's axiom­
atic defines whole numbers and them alone, as a rule-governed opera­
tional domain. Real numbers can certainly be defined directly with a 
special axiomatic (that of a complete, total ly ordered Archimedean 
field) .  But, if  the essence of 'number' resides in the specificity of the 
statements constituting these axiomatics, then, given that these state­
ments are entirely dissimilar in the case of the axiomatic of whole 
numbers and of that of real numbers, it would seem that, in respect 
of their concept, whole numbers and real numbers have nothing 
In common. 
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1 . 1 1 .  It is as i f, challenged to propose a concept of number that can 
endure the modern ordeal of the defection of the One, our thinkers 
reserve the concept for one of its ' incarnations' (ordinal, cardinal, 
whole, rea l  . . .  ) ,  without being able to account for the fact that the 
idea and the word 'number' are used for all of these cases. More 
particularly, they prove incapable of defining any unified approach, 
any common ground, for discrete numeration (whole numbers ) ,  con­
tinuous numeration ( real numbers ) and 'general ' ,  or set-theoretical, 
numeration (ordinals and cardinals ) .  And yet it was precisely the 
problem of the continuum, the dia lectic of the discrete and the con­
tinuous, which, saturating and subverting the ancient opposition 
between arithmetic and geometry, compel led the moderns to rethink 
the idea of number. In this sense their work, admirable as it is in so 
many ways, is a fai lure. 

1 . 12 .  The anarchy thus engendered ( and I cannot take this anarchy 
to be innocent of the unthinking despotism of number) is so much 
the greater in so far as the methods put to work in each case are 
tota lly disparate: 

( a )  Natural whole numbers can  be  determined either by  means of 
a special  axiomatic, at whose heart is the principle of recurrence 
(Peano) ,  or by means of a particular (finite) case of a theory of 
ordinals, in which the principle of recurrence becomes a theorem 
(Dedekind ) .  

( b) To engender negative numbers, algebraic manipulations must 
be introduced that do not bear on the 'being' of number, but 
on its operational arrangement, on structures ( symmetricisation 
of addition ) .  

(c )  These manipulations can be repeated to obta in rational numbers 
( symmetricisation of multiplication ) .  

( d )  Only a fundamental rupture, marked this time by  a shift towards 
the topologica l ,  can found the passage to real numbers (consid­
eration of infinite subsets of the set of rationals, cuts or Cauchy 
seq uences ) .  

(e )  We return to algebra to construct the field of complex numbers 
(a lgebraic closure of the Rea l  Field, adjunction of the ' ideal '  
element i = �, or direct operational axiomatisation on pairs 
of real numbers ) .  

( f) Ordinals are introduced through the consideration of types of 
order (Cantor ) ,  or through the use of the concept of transitivity 
(von Neumann ) .  
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(g) The cardinals are treated through a total ly different procedure, 
that of biunivocal correspondence. 13 

1 . 1 3 .  This arsenal of procedures was historical ly deployed according 
to overlapping l ines which passed from the Greeks, the Arab algebra­
ists and those of Renaissance Italy, through al l  the founders of modern 
analysis, down to the 'structura l ists ' of modern algebra and the set­
theoretical creations of Dedekind and Cantor. How are we to extract 
from it a clear and univocal  idea of number, whether we think it as 
a type of being or as an operational concept? All that the thinkers of 
number have been able to do is to demonstrate the intellectual pro­
cedures that lead us to each species of 'number ' .  But, in doing so, 
they left number as such in the shadow of its name. They remained 
distant from that 'unique number which cannot be any other', I 4 

whose stel lar insurrection Mal larme proposed. 

1 . 14 .  The question, then, is as follows: is there a concept of number 
capable of subsuming, under a single type of being answering to a 
uniform procedure, at least natural whole numbers, rational numbers, 
real numbers and ordinal numbers, whether finite or infinite ? And 
does it even make sense to speak of a number without at once speci­
fying which singular, i rreducible apparatus it belongs to ? The answer 
is yes. This is precisely what is made possible by the marginal theory, 
which I propose to make phi losophically centra l ,  of 'surreal 
numbers ' .  

This theory offers us the true contemporary concept of number, 
and in doing so it overcomes the impasse of the thinking of number 
in its modern-classical form, that of Dedekind, Frege and Cantor. On 
its basis, and as the result of a long labour of thought, we can prevai l  
over the blind despotism of the numerical unthought. 

1 . 1 5 .  We must speak not of a single age of the modern thinking of 
number, but of what one might cal l ,  taking up an expression Natacha 
Michel applies to l iterature, the 'first modernity' of the thinking of 
number. IS The names of this first modernity are not those of Proust 
and Joyce, but those of Bolzano, Frege, Cantor, Dedekind and Peano. 
I am attempting the passage to a second modernity. 

1 . 16.  I have said that the three chal lenges to which a modern doc­
trine of number must address itself are those of the infinite, of zero 
and of the absence of any grounding by the One. If we compare Frege 
and Dedekind - so close on so many points - on this matter, we 
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immediately note that the order in which they arrange their responses 
to these chal lenges differs in an essential respect: 

On the infinite Dedekind, with admirable profundity, begins with the 
infinite, which he determines with a celebrated positive property: 'A 
system S is said to be infinite when it is similar to a proper part of 
itself. ' 1 6 And he undertakes immediately to 'prove' that such an infi­
nite system exists. The finite will be determined only subsequently, 
and it will be the fin ite that is the negation of the infinite ( in which 
regard Dedekind's numerical dialectic has something of the Hegelian 
about i t ) . 1 7 Frege, on the other hand, begins with the finite, with 
natural whole numbers, of which the infinite will be the 'prolonga­
tion' or the recol lection in the concept. I S 

On zero Dedekind abhors the void and its mark, and says so quite 
explicitly: '[W]e intend here for certain reasons wholly to exclude the 
empty system which contains no elements at a l l . ' 1 9 Whereas Frege 
makes the statement 'zero is a number,20 the rock of h is whole 
edifice. 

On the One There is no trace of any privileging of the One in Frege 
(precisely because he starts audaciously with zero) .  So one - rather 
than the One - comes only in second place, as that which falls under 
the concept ' identica l to zero' (the one and only object that fa lls under 
the concept being zero itself, we are entitled to say that the extension 
of this concept i s  one ) .  Dedekind, on the other hand, retains the idea 
that we should 'begin' with one: 'the base-element 1 is cal led the 
base-number of the number-series N' .2 1 And, correlatively, Dedekind 
fa l ls back without hesitation on the idea of an absolute AW2 of 
thought, an idea that could not appear as such in Frege's formalism: 
'My own rea lm of thoughts, i .e .  the totality S of a l l  things, which can 
be objects of my thought, is infinite . '23 Thus we see that, in retaining 
the rights of the One, the All is supposed , because the All is that 
which, necessari ly, proceeds from the One, once the One is. 

1 . 1 7. These divergences of order are no mere technical matter. They 
relate, for each of these thinkers, to the respective centre of gravity 
of their conception of number and - as we shall see - to the simulta­
neous stopping puint and founding point of their thought: the infinite 
and existence for Dedekind, zero and the concept for Frege. 

1 . 1 8 .  The passage to a second modernity of the thinking of number 
obl iges thought to return to zero, to the infinite and to the One. A 
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total d iss ipation of the One, an ontological decision as to the being 
of the void and that which marks it, a lavishing without measure of 
infinities : such are the parameters of such a passage. Unbinding from 
the One delivers us to the unicity of the void and to the dissemination 
of the infin ite . 



2 

Frege 

2. 1 .  Frege 1 maintains that pure thought engenders number. Like 
Mallarme, a lbeit without the effect of Chance, Frege thinks that 
'every thought emits a dicethrow' .2 What is cal led Frege's ' logicism' 
runs very deep: number is not a singular form of being, or a particular 
property of things. It is neither empirical nor transcendent. Nor is it, 
on the other hand, a constitutive category; it is deduced from the 
concept. It is, in Frege's  own words, a trait of the concept.3 

2.2.  The pivota l property that permits the transition from pure 
concept to number is that of a concept' s  extension. What does this 
mean?  Given any concept whatsoever, an object 'fa l l s '  under this 
concept if it is  a 'truth-case' of this concept, if the statement that 
attributes to this object the property comprised in the concept is a 
true statement. In other words, if the object satisfies the concept. Note 
that everything originates with the truth-value of statements, which 
is their denotation ( truth or fal sity ) .  It could be said that, i f  the 
concept generates number, it does so only in so far as there is truth . 
Number is in this sense the index of truth, not an index of being. 

But the idea of extension is ramified and obscure. 

2 .3 .  Given a concept, by the extension of that concept we mean all 
the truth-cases (a l l  objects qua truth-cases ) that fal l  under this concept. 
Every concept has an extension. 

Now, take two concepts C 1 and C2 • We wil l  call them equinumer­
ate4 if there exists a biunivocal correspondence associating, object for 
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object, that which fal l s  under concept C 1 with that which fal ls under 
concept C2 • That is, i f  a biunivocal correspondence can be defined 
between the extension of C 1 and the extension of C2 • 

It is clear that Frege favours a 'cardinal ' definition of number; that 
he is not overly concerned with the structura l order of that which fal ls 
under the concept. And in fact this essential tool of biunivocity is 
characteristic of al l  attempts to 'number' the multiple in itself, the pure 
multiple subtracted from a l l  structural considerations. To say that two 
concepts are equinumerate is to say that they have the 'same quantity ', 
that their extensions are the same size, abstracting from any con­
sideration as to what the objects are that fal l  under those concepts . 

2.4. Number consists in marking equinumeracy, the quantitative 
identity of concepts . Whence the famous definition: 'The number 
which belongs to the concept C is the extension of the concept "equi­
numerate to concept C". ' 5  Which means:  every concept C generates 
a number - namely, the set of concepts equinumerate to C, having 
the 'same pure quantity' , the same quantity of extension, as C. Note 
that a number, grasped in its being, always designates a set of con­
cepts, namely all those that satisfy the statement ' is  a concept equi­
numerate to C'. 

2.5. The concept of number is constructed through the fol lowing 
progression: 

Concept � Truth � Objects that fal l  under the concept (that 
satisfy the statement attributing the concept to the object) � 
Extension of the concept (a l l  truth-cases of the concept) � Equi­
numeracy of two concepts ( via biunivocal correspondence of their 
extensions) � Concepts that fal l  under the concept of equinu­
me racy to a given concept C (that satisfy the statement ' is equinu­
merate to C' )  � The extension of equinumeracy-to-C (the set of 
concepts from the preceding stage) � The number that belongs 
to concept C (number is thus the name for the extension of 
equinumeracy-to-C ) .  

From a simplified and  operational point of  view, it could a lso 
be said that, starting from the concept, we are able to pass through 
the object on condition that there is truth ; that we then compare 
concepts, and that number names a set of concepts that have in 
common a property made possible and defined by this comparison 
(equinumeracy) . 
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2.6. To rediscover the 'ordinary', fami l iar numbers on the basis of 
this pure conceptual ism regulated by truth alone, Frege begins with 
his admirable deduction of zero: zero is the number belonging to the 
concept 'not identical to itself' .6 S ince every object is identical to itself, 
the extension of the concept 'not identical to itself' is empty. It 
follows that zero is the set of concepts whose extension is empty and 
which, by virtue of this, are equinumerate to the concept 'not 
identical to itself' . Which is precisely to say that zero is that number 
belonging to every concept whose extension is empty, is zero. 

I have indicated in 1 . 1 7  the passage to the number 1: 'One' is the 
number that belongs to the concept ' identical to zero, . 7  It is interest­
ing to note that Frege emphasises, with regard to 1, that it has no 
' intuiti ve' or empirical privi lege, any more than it is a transcendent 
foundation: 'The definition of 1 does not presuppose, for its objective 
legitimacy, any matter of observed fact. ,8 There can be no doubt that 
Frege participates in the great modern process of the destitution of 
the One. 

The engendering of the sequence of numbers beyond 1 poses only 
technical problems, which are resolved, in passing from n to n + 1 ,  
by constructing between the extensions o f  corresponding concepts a 
correlation such that the 'remainder' is exactly 1 - which has already 
been defined. 

2 .7. Thus the deduction of number as a consequence of the concept 
appears to have been accomplished. More exactly: from the triplet 
conceptltruth!object, and from the single formal operator of biunivo­
cal correspondence, number emerges as an instance of pure thought, 
or an integral ly logical production; thought must presuppose itsel f, 
in the form of a concept susceptible to having truth-cases (and there­
fore endowed with an extension ) .  In so doing, thought presupposes 
number. 

2.8. Why choose particularly the concept 'not identical to itself' to 
ground zero ? Any concept could be chosen so long as one is sure it 
has an empty extension, that no th inkable object could have the 
property it designates . For example 'square circle' - a concept which 
in fact Frege declares is 'not so black as [it is] painted, . 9  Since we 
seek an entirely conceptual determination of number, the arbitrary 
nature of this choice of concept is a l ittle embarrassing. Frege is quite 
aware of this, s ince he writes: 'I could have used for the definition of 
nought any other concept under which no object fal ls ." o But, to 
obviate his own objection, he invokes Leibniz: the Principle of Iden­
tity, which says that every object is identical to itself, has the merit 
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of being 'purely logical ' . 1 1  Purely logical ? But we understood that it 
was a matter of legitimating logico-mathematical categories ( specifi­
cal ly, number) on the sole basis of the laws of pure thought. Isn't 
there a risk of circularity if a logical rule is required right at the 
outset ? Now, equal ity is one of the logical ,  or operational, predicates 
that require grounding (namely, equal ity between numbers ) .  It might 
be said, of course, that ' identical to itsel f' should not be confused 
with 'equal to itsel f' . But if ' identity' must here indeed be careful ly 
distinguished from the logical predicate of equal ity, it is nevertheless 
equally clear that the statement 'every obj ect is identical to itself' is 
not a 'purely logical '  statement. It is an onto-logical statement. And, 
qua ontological statement, it is immediately disputable: no Hegelian, 
for example, would admit the universal val idity of the principle of 
identity. For our hypothetical Hegelian, the extension of the concept 
'not identical to itsel f' is anything but empty ! 

2.9. The purely a priori determination of a concept certain to have 
an empty extension is an impossible task without powerful prior 
ontological axioms. The impasse that Frege meets here is that of an 
unchecked doctrine of the object. For, from the point of view of the 
pure concept, what is an 'object' in genera l ,  any object whatsoever, 
taken from the total Universe of objects ? And why is the object 
required to be identical to itself, when the concept is not even required 
to be non-contradictory in order to be legitimate, as indicated 
by Frege 's positive regard for concepts of the 'square circle' type, 
which, he stresses, are concepts l ike any other? Why would the 
law of the being of objects be more stringent than the law of the 
being of concepts ? Doubtless it would be so if one were to accept 
Leibnizian ontology, for which existent objects obey an other 
principle than do thinkable objects, the Principle of Sufficient 
Reason. It thus appears that the deduction of number on the basis 
of the concept is not so much universal ,  or 'purely logical ' ,  as it is 
Leibnizian. 

2 .10 .  To posit as self-evident that the extension of a concept is this 
or that ( for example, that the extension of the concept 'not identical 
to itself' is empty) is tantamount to supposing that we can move 
unproblematically from concept to existence, given that the extension 
of a concept brings into play the 'objects ' that fal l  under this concept. 
A general ised ontological argument is at work here, and it is this very 
argument that subtends the deduction of number on the basis of the 
concept alone: number belongs to the concept through the mediation 
of the thinkable objects that fall under the concept. 
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2. 1 1 .  The principal thought-content of Russel l 's  paradox, com­
municated to Frege in 1903, is its undermining of every pretension 
to legislate over existence on the basis of the concept alone, and 
especial ly over the existence of the extension of concepts. Russell 
presents a concept (in Frege's sense ) - the concept 'to be a set that is 
not an element of itself' - which is surely a wholly proper concept 
(more so, truth be told, than 'not identical to itself' ) ,  but one none­
theless whose extension does not exist. It is actually contradictory to 
suppose that 'objects ' - in this instance, sets - that ' fal l  under this 
concept' themselves form a set.12 And, i f  they 40 not form a set, then 
no biunivocal correspondence whatsoever can be defined for them. 
So this 'extension ' does not susta in equinumeracy, and consequently 
no number belongs to the concept 'set that is not an element of 
itself' . 

The advent, to the concept, of an innumerable ruins Frege's 
general deduction. And, taking into account the fact that the para­
doxical concept in question is quite ordinary ( for example, the concept 
is valid for all the sets customarily used by mathematicians: they are 
not elements of themselves ) ,  we might wel l  suspect that there exist 
many other concepts to which no number belongs . In fact, it is impos­
sible to predict a priori the extent of the disaster. Even the concept 
'not identical to itself' could well turn out not to have any existent 
extension, which is something entirely different from having an empty 
extension. Let's add that Russel l 's  paradox is purely logical, that is 
to say, it is precisely proven: to admit the existence of a set of all 
those sets that do not belong to themselves undermines deductive 
language by introducing a formal contrad iction (the equiva lence 
between a proposition and its negation ) .  

2 . 12. A sort of 'repair' was proposed b y  Zermelo. 1 3 It consists in 
saying that we can conclude from the concept the existence of its 
extension on condition that we operate within an already given exis­
tence. Given a concept C and a domain of existing objects, we can 
say that there exists, in this existing domain, the set of objects that 
fa l l  under this concept - i.e. the extension of the concept. Obviously, 
this extension is relative to a domain specified in advance and does 
not exist ' in itself' . Th is is a major ontological transformation: with in 
this new framework it is not possible to move from concept to exis­
tence ( and thus to number) ;  we can only move to an existence that 
is somehow carved out of a pre-given existence. We can 'separate' in 
a given domain those objects within it that validate the property 
exposed by the concept. Th is is why Zermelo's principle, which dras­
tica lly l imits the rights of the concept and of language over existence, 
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is called the Axiom of Separation. And it does indeed seem that 
accepting this axiom safeguards us against the inconsistency-effects 
of Russell-type paradoxes . 

2. 1 3 .  Russel l 's  paradox is not paradoxical in the sl ightest. It is a 
materialist argument, because it demonstrates that multiple-being is 
anterior to the statements that affect it. It is impossible, says the 
'paradox', to accord to language and to the concept the right of 
unfettered legislation over existence. Even supposing that there is a 
transcendental function of language, it supposes also the avai labi l ity 
of some prior existent, the power of this function being simply that 
of carving out or delimiting extensions of the concept within this 
specified existent. 

2. 14.  Can we, in assuming Zermelo's axiom, save the Fregean con­
struction of number? Once again, everyth ing turns on the question 
of zero . I might proceed in the fol lowing way: given a delimited 
domain of objects, whose existence is somehow external ly guaran­
teed, I wil l  cal l  'zero' (or 'empty set ' ,  which is the same thing) that 
which detaches, or separates, within this domain, the concept 'not 
identical to itsel f' ,  or any other such concept under which I can assure 
myself that no objects of the domain fal l .  As we are dealing with a 
limited domain, and not, as in Frege's construction, with 'al l  objects' 
(a  formulation that led to the impasse of a Leibnizian choice without 
criteria ) ,  there is a chance of my finding such a concept. If, for 
example, I take a set of black objects, I wil l  cal l  'zero' that which 
separates in this set the concept 'to be white'. The rest of the con­
struction wil l  follow. 

2. 1 5 .  But what domain of objects could I start with, for which it can 
be guaranteed that these objects pertain to pure thought, that they 
are 'pure ly logica l ' ?  Recall that Frege intends to construct a concept 
of number that is, according to his own expression, 'not . . .  either 
anything sensible or a property of an external thing', 1 4 and that he 
emphasises on several occasions that number is subtracted from the 
representable. Establish ing that number is a production of thought, 
deducing it from the abstract attributes of the concept in genera l -
this cannot be ach ieved using black and white ohjects . The question 
then becomes: what existent can I assure myself of, outside of any 
experience ? Is the axiom 'something exists' an axiom of pure thought 
and, supposing that it is, can I discern any property of which it 
is certain that it does not belong in any way to this existent 
'something' ? 



22 GENEALOGIES: FREGE. DEDEKIND. PEANO. CANTOR 

2. 16. A 'purely logical ' demonstration of existence, for thought, of 
a nondescript object, a point of being, an 'object = x': the statement 
'every x i s  equal to itself' is an axiom of logic with equality. Now, 
the universal rules of first-order logic, a logic val id for every domain 
of objects, a l low us to deduce, from the statement 'every x is equal 
to x', the statement 'there exists an x that is equal to x' ( subordina­
tion of the existential quantifier to the universal quantifier) . 15 There­
fore, there exists x (at least that x which is equal to itself) .  

Thus we can demonstrate within the framework of set theory, first 
of all, by purely logical means, that a set exists. Then we can separate 
the empty set within that existent whose existence has been proved, 
by util ising a property that no element can satisfy ( for example, ' is 
not equal to itself' ) .  We have respected Zermelo's axiom, s ince we 
have operated within a prior existent, but we have succeeded in 
engendering zero. 

2 . 1 7. It is quite obvious, I th ink, that this 'proof' is an unconvincing 
artifice, a logical sleight of hand. From the universal postulate of 
self-equality (which we might possibly accept as an abstract law, or 
a law of the concept) ,  who could reasonably infer that there exists 
something rather than noth ing ? If the universe were absolutely void, 
it would remain logically admissible that, supposing that something 
existed (which would not be the case ) ,  it would have to be equal to 
itself. The statement 'every x is equal to x' would be valid, but there 
would be no x, so the statement 'there exists an x equal to itself' 
would not be valid. 

The passage from un iversal statement to assertion of existence is 
an exorbitant right, which the concept cannot arrogate to itself. It is 
not possible to el ic it existence on the basis of a universal law that 
could be upheld j ust as well in absolute noth ingness (consider for 
example the statement 'the nothing is identical to itself' ) .  And, since 
no existent object can be deduced from pure thought, you cannot 
separate zero therein.  Zermelo does not save Frege. 

2. 1 8 .  The existence of zero, or of the empty set, and therefore the 
existence of numbers, is in no way deducible from the concept, or 
from language. 'Zero exists' is inevitably a first assertion; the very 
one that fixes an existence from which all others wil l  proceed. Far 
from it being the case that Zermelo's axiom, combined with Frege's 
logicism, al lows us to engender zero and then the chain of numbers, 
it is on the contrary the absolutely inaugural existence of zero (as 
empty set ) that ensures the poss ibi l ity of separating any extension of 
a concept whatsoever. Number comes first here: it is that point of 
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being upon which the exercise of the concept depends. Number, as 
number of nothing, or zero, sutures every text to its latent being. The 
void is not a production of thought, because it is  from its existence 
that thought proceeds, in as much as ' it is the same thing to think 
and to be' . 1 6 In this sense, it is the concept that comes from number, 
and not the other way around .  

2 . 19. Frege 's attempt i s  unique in certa in regards : i t  is not a matter 
of creating new intra-mathematical concepts (as wi l l  be the case in  
Dedekind and Cantor) ,  but  of elucidating - with the sole resource of  
rigorous analysis - what, among the possible objects of thought, 
singularises those which fal l  under the concept of number. In this 
respect, my own efforts follow along the same lines. We simply need 
to remove the obstacles by reframing the investigation according to 
new parameters. Above al l ,  it must be shown that thought is not 
constituted by concepts and statements alone, but also by decisions 
that engage it within the epoch of its exercise. 



3 

Additional Note on a 
Contem porary Usage of Frege 

- -

3 . 1 .  Jacques-Alain Mi ller, in a 1965 lecture entitled 'Suture' and 
subtitled 'Elements of the logic of the signifier' , 1 put forward a reprise 
of Frege's construction of number. His text founds a certain regime 
of compatibi l ity between structura l ism and the Lacanian theory of 
the subject. 1 am myself periodical ly brought back to this foundation,2 

a lbeit only on condition of disrupting it somewhat. Twenty-five years 
later, ' I  am here; 1 am sti l l  here ' .3 

3 .2.  Mi l ler puts the fol lowing question to Frege: ' What is it that 
functions in the sequence of whole numbers ? ,4 And the response to 
this question - a response, might 1 say, forceful ly extorted out of 
Frege - is that 'in the process of the constitution of the sequence, the 
function of the sub;ect, unrecogn ised,s is operative' .  6 

3 .3 .  If we take this response seriously, it means that, in the last 
instance, in the proper mode of its miscognition, it is the function of 
that subject whose concept Lacan's  teaching communicates to us that 
constitutes, i f  not the essence, at least the process of engenderment 
(the 'genesis of progression ' ,  says Mi l lerf of number. 

Obviously such a radical  thesis cannot be ignored. Radical, it 
would seem at first glance, with regard to Frege's  doctrine, which 
dedicates a specific argument to the refutation of the idea that number 
might be 'subjective,8 ( although it is  true that, for Frege, 'subjective' 
means 'caught up in representation ' ,  which obviously does not match 
the Lacanian function of the subject ) ,  Radical also with regard to my 
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own thesis, s ince I hold that number is a form of being, and that, far 
from being subtended by the function of the subj ect, it is on the 
contrary on the basis of number, and especial ly of that first number­
being that is the void (or zero ) ,  that the function of the subject 
receives its small  share of being. 

3.4. We will not undertake here to examine the importance of this 
text - the first great Lacanian text not to be written by Lacan himself 
- for the doctrine of the signifier, nor to explore what ana logy it 
employs to i l luminate the importance - at the time, sti l l  l ittle appreci­
ated - of all that the master taught us as to the subject's being com­
prised in the effects of a chain. We seek to examine exc lusively what 
Mil ler's text assumes and proposes with regard to the thinking of 
number as such. 

3 .5 .  Mil ler's demonstration is organised as fol lows: 

• To found zero, Frege ( as we saw in 2.6) summons to his aid the 
concept 'not identical to itself' .  No object fa l ls  under this concept. 
On this point, Mi l ler emphasises - even compounds - Frege's  refer­
ence to Leibniz. To suppose that an object could be not be identical 
to itsel f, or that it could be non-substitutable for itself, would be 
entirely to subvert truth . In order to be true, a statement bearing upon 
object A must suppose the in variance of A in each occurrence of the 
statement, 'each time' the statement is made. The princip le 'A is A' 
is a law of any possible truth . And reciprocal ly,  in order that truth 
be saved, it is crucial that no object should fal l  under the concept 
'not identical to itself' . Whence zero, which numbers the extension 
of such a concept. 

• Number is thus shown to issue from the concept a lone, on condi­
tion of truth . But this demonstration is consistent only because it has 
been able to invoke in thought an object non-identical to itself, even 
if only to discharge it in the inscription of zero. Thus, Mi l ler writes, 
'the 0 which is inscribed in the place of the number consummates the 
exclusion of this object' . 9 

To say that 'no object' falls under the concept 'not identical to 
itself' is to make this object vanish as soon as it is invoked, in this 
nothing the only subsisting trace of which will be, prec isely, the mark 
zero: 'Our purpose has been, '  Mi l ler concludes, 'to recogn ize in the 
zero number the suturing stand-in for the lack' .  1 0  

• What is i t  that comes to lack thus ? What 'object' can have as a 
stand-in for its own absence the first numerical mark; and support, 
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in relation to the whule chain of numbers, the uninscribable place of 
that which appears only in order to vanish ? What is it that insists 
between numbers ?  We must certainly agree that no 'object' can, even 
by fai lure or default, fa l l  in that empty place that assigns non­
self-identity, But there does exist (or here, more precisely, ek-sist) 
precisely that which is not object, that which is proper to the non­
object, the object as impossibi l ity of the object: the subj ect. 'The 
impossible object, wh ich the discourse of logic summons as the not­
identical with itself and then rejects . , . in order to constitute itself as 
what it is, which it summons and rejects wanting to know nothing 
of it, we name this object, in so far as it functions as the excess which 
operates in the sequence of numbers, the subject. ' I I 

3.6. We must meticulously distinguish between that which Mil ler 
assumes from Frege and that which he deciphers in Frege's work on 
his  own account, I wil l  proceed in three stages. 

3 .7. FIRST S TA GE Mil ler takes as his  starting point the proposition 
of Leibniz-Frege according to which salva veritate l 2 demands that a l l  
objects should be identical to themselves. The whole l iteralisation of 
the real towards which Leibniz worked al l  his l ife, and to which 
Frege's ideography is the undoubted heir, is in fact surreptitiously 
assumed here. In this regard, Mil ler is indeed right to equate, along 
with Leibniz, ' identical to itself' and 'substitutable' ,  thus denoting an 
equivalence between the object and the letter. For what could it mean 
to speak of the substitutabil ity of an object? Only the letter is entirely 
substitutable for itself. 'A is A' is a principle of letters, not of objects. 
To be identifiable at a remove from itself, and subject to questions 
of substitutabi l ity, the object must fall under the authority of the 
letter, 1 3 which alone renders it over to calculation. I f  A is not identical 
at all moments to A, truth (or rather veridical ity ) as calculation 
collapses. 

The latent hypothesis is therefore that truth is of the order of cal­
culation. It is only on this supposition that, firstly, the object has 
to be represented as a letter; and, secondly, that the non-self-identity 
of the object-letter radical ly subverts truth . And if truth is of the 
order of calculation, then zero - which numbers the exclusion 
of the non-self-identical ( the subject) - is itself nothing but a letter, 
the letter O. The conclusion then fol lows straightforwardly that 
zero is the inert stand-in for lack, and that what 'drives' the sequence 
of numbers as a product of marks - a repetition in which is articu­
lated the miscognition of that which insists - is the function of the 
subject. 
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More simply: if  truth is saved only by upholding the principle of 
identity, then the object emerges in the field of truth only as a letter 
amenable to calculation. And, if this is the case, number can susta in 
itself only as the repetition of that which insists in lacking, which is 
necessarily the non-object (or the non-letter, which is the same thing) ,  
the place where 'nothing can be written' \ 4 - in short, the subject. 

3 .8 .  No one is obl iged to be a Leibnizian, even i f  we must recognise 
in this philosophy the archetype of one of the three great orientations 
in thought, the constructivist or nominalist orientation ( the other two 
being the transcendent and the generic ) . \ 5  As an advocate of the 
generic orientation, I declare that, for truth to be saved, one must 
precisely abolish those two great maxims of Leibnizian thought, the 
Principle of Non-Contradiction and the Princ iple of Indiscernibles. 

3.9. A truth supposes that the situation of which it is  the truth attains 
non-self-identity: this non-self-identity is indicated by the situation's 
being supplemented by an 'extra ' multiple, one whose belonging or 
non-belonging to the situation is , however, intrinsical ly undecidable. 
I have named this supplement 'event' ,  and it is always from an event 
that a truth-process originates . Now, when the undecidable event 
must be decided within the situation, that situation necessarily under­
goes a vaci l lation as to its identity. 

3 . 10. The process of a truth - puncturing the strata of knowledge 
harboured by the situation - inscribes itself within the situation as 
indiscernible infinity, which no thesaurus of established language has 
the power to des ignate. 

Let's say simply that zero, or the void, has nothing in itsel f  to do 
with the salvation of truth, which is at play in the ' laboured' correla­
tion between the undecidabil ity of the event and the indiscernibi l ity 
of its result with in the situation. No more so than it is possible to 
refer truth to the power of the letter, s ince the existence of a truth is 
precisely that to which no inscription can attest. The statement 'truth 
is' - far from guaranteeing that no object fal l s  under the concept of 
'not identical to itself' and that therefore zero is the number of that 
concept - instead al lows us th is threefold conclusion: 

- there exists an object that has attained 'non-self-identity ' (unde­
cidabi l ity of the event) ;  

- there exist an infinity of objects that do not fal l  under any concept 
( indiscernibi l ity of a truth ) ;  

- number is not a category of truth. 
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3. 1 1 .  SECOND STAGE What is the strategy of Mil ler's text ? And 
what role does number as such play within it? Is it real ly about 
arguing that the function of the subject is impl icated - as a miscog­
nised foundation - in the essence of number? This is undoubtedly 
what is stated in all clarity by the formula I have already cited above: 
' In the process of the constitution of the sequence [of numbers 1 . . .  the 
function of the subject . . .  is operative , ' 1 6 More precisely, only the 
function of the subject - that which zero, as number, marks in the 
place of lack, holding the place of its revocation - is capable of 
explaining what, in the sequence of numbers, functions as iteration 
or repetition: being excluded, the subject (the non-self-identical) 
includes itsel f  through the very insistence of marks, incessantly repeat­
ing the 'one more step ' ,  firstly from 0 to 1 ( 'the 0 counts for 1 ' , notes 
Mil ler) ,  then indefinitely, from n to n + 1 :  ' its [the subject's - in the 
Lacanian sense 1 exclusion from the field of number is identified with 
repetition ' .  1 7 

3 . 12 .  Other passages of Mil ler's text are more equ ivocal, indicating 
an analogical reading. For example: 'If the sequence of numbers, 
metonymy of the zero, begins with its metaphor, if the zero member 
of the sequence as number is only the stand-in suturing the absence 
(of the absolute zero ) wh ich moves beneath the chain according to 
the a lternation of a representation and an exc lusion - then what is 
there to stop us from recogn ising in the restored relation of the zero 
to the sequence of numbers the most elementary articulation of the 
subject's relation to the signifying chain ? , 1 8 The word 'recognising' is 
compatible with the idea that the Fregean doctrine of number pro­
poses a 'matrix' ( the title of another article by Mil ler on the same 
question ) 1 9 that is isomorphic with (maximum case ) or similar to 
(minimum case ) ,  but in any case not identical  to, the relation of the 
subject to the signifying chain.  Frege's  doctrine would then be a per­
tinent analogon of Lacanian logic: to which we would have no reply, 
since in that case Mi ller's text would not be a text about number. It 
would be doubly not so: firstly because it would speak, not of number, 
but of Frege's doctrine of number (without taking any position on 
the val idity or cons istency of that doctrine ) ;  and secondly because it 
would present the sequence of numbers as a didactic vector for the 
logic of the signifier, and not as an effective example of an implica­
tion of the function of the subject in the sequence of numbers. 

3 . 1 3 .  This critica l  evasion assumes that two conditions are met: that 
there is, between the doctrine of number and that of the s ign ifier, 
isomorphism or s imilarity, and not identity or exemplification; and 



A CONTEMPORARY USAGE OF FREGE 29 

that Mil ler does not account for the va lid ity of the Fregean doctrine 
of number. 

3 . 14 .  On this last point, where, to my mind (that is, to one who is 
concerned with the th inking of number as such ) ,  everything hangs in 
the balance, Mil ler maintains the suspense at every step. He speaks 
of 'Frege's system' without our being able to decide whether or not, 
in his opinion, the latter is an actually accomplished theory of number, 
a theory entirely defensible in essence. It is striking that at no point 
in this very subtle and intricate exercise are the immanent problems 
of 'Frege's system' ever raised - in particular, those that I h igh l ighted 
above with regard to zero, the impact of Russel l 's  paradox, Zermelo's 
axiom and, ultimately, the relation between language and existence. 
It thus remains possible to bel ieve that the isomorphism signifier/ 
number operates between, on the one hand, Lacan and, on the other, 
Frege reduced to a singular theory whose inconsistency is of no con­
sequence with regard to the analogical goals pursued. 

3 . 15 .  Evidently, it remains to be seen whether this inconsistency isn 't, 
as a result, transferred to the other pole of the analogy, that is, to 
the logic of the signifier. The risk is not inconsequentia l ,  given that 
Mil ler places the latter in a founding position with regard to logic 
tout court - presumably including Frege's doctrine: 'The first [the 
logic of the signifier] treats of the emergence of the second [the logic 
of logicians] , and should be conceived of as the logic of the origin of 
logic . '20 But what happens if the completion of this process of origi­
nation is induced, through the theme of the subject, by a scheme 
(Frege's )  marred by inconsistency ? But this is not my problem. Given 
the conditions I have laid out, if the text is not about number, then 
we are finished here. 

3 . 16.  THIRD STAGE There remains, however, an incontestable 
degree of adherence on Mil ler's part to a common representation of 
number, wherein number is conceived of as in some way intuitive, 
and which I cannot accept. This concerns the idea - central ,  s ince it 
is precisely here that the subject makes itsel f  known as the cause of 
repetition - according to which number is grasped as a ' functioning', 
or in the 'genesis of the progression ' .  This is the image of a number 
that is 'constructed' iteratively, on the basis of that point of puncture 
that is denoted by zero . This dynamical theme, which would have us 
see number as passage, as self-production, as engenderment, is omni­
present in Mi l ler's text. The analysis centres prec isely on the 'passage' 
from 0 to 1 ,  or on the 'paradox of engendering' n + 1 from n. 
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3 . 1 7. This image of number as iteration and passage precludes any 
orderly discussion of the essence of number. Even if we can only 
traverse the numeric domain according to certa in laws of progression , 
of which succession is the most common ( but not the only one, far 
from it ) ,  why must it follow that these laws are constitutive of the 
being of number? It is easy to see why we have to 'pass' from one 
number to the next, or from a sequence of numbers to its l imit. But 
it is, to say the least, imprudent thereby to conclude that number is 
defined or constituted by such passage. It might well be (and this is 
my thesis )  that number does not pass, that it is immemorial ly deployed 
in a swarming2 1 coextensive with its being. And we wil l  see that, just 
as these laborious passages only govern our passage through this 
deployment, in the same way it is l ikely that we remain ignorant of, 
have at the present time no use for, or no access to, the greater part 
of those numbers that our thought can conceive of as existent. 

3 . 18 .  The 'constructivist' thesis, which makes of iteration, succes­
sion, passage the very essence of number, leads to the conclusion that 
very few numbers exist, s ince here 'exist' has no sense apart from 
that effectively supported by some such passage. Certainly, intuition­
ists assume this impoverished perspective. Even a semi-intuitionist 
l ike Borel22 thought that the great majority of natural whole numbers 
'don't exist' except as a fictional and inaccessible mass. So it might 
well be that the Leibnizian choice that Mil ler borrows from Frege is 
doubled by a latent intuitionist choice. 

We must recognise that intuitionist logic and the logic of the signi­
fier have more than a l ittle in common, if only because the former 
expressly invokes the subject ( the 'mathematician-subject ' )  as part of 
its machinery. But in my opinion such a choice would represent an 
additional reason not to enter into a doctrine of number whose 
overa l l  effect is to make the place of number, measured by the opera­
tional intuition of a subject, inexorably finite. For the domain of 
number is rather an ontological prescription incommensurable with 
any subject and immersed in the infin ity of infinities. 

3 . 1 9. The problem now becomes: how to think number whi lst admit­
ting, against Leibniz, that there are real indiscernibles; against the 
intuitionists, that number persists and does not pass; and against the 
foundational use of the subjective theme, that number exceeds all 
fin itude ? 



4 

Dedekind 

4. 1 .  Dedekind I introduces his concept of number within the frame­
work of what we would today call a 'na'ive' theory of sets . 'Na'ive '  
because a theory of multiplicities is advanced that recapitulates 
various presuppositions about things and about thought. 'Na'ive' 
meaning, in fact: philosophical .  

Dedekind states explicitly, in the opening of his  text The Nature 
and Meaning of Numbers, that he understands 'by thing every object 
of our thought' ;2 and, a l ittle later, that, when different th ings are 
'for some reason considered from a common point of view, associated 
in the mind, we say that they form a system S' .3 A system in Dede­
kind's sense is therefore quite simply a set in Cantor's sense. The 
space of Dedekind's work is not the concept (as  in Frege ) ,  but, 
directly, the pure multiple, a col lection that counts for one (as a 
system) objects of thought. 

4.2. Dedekind develops a conception of number that ( l ike Cantor's )  
is essentially ordinal. We saw (compare 2 .3 )  that Frege's  conception 
was essential ly cardinal (proceeding via biunivocal correspondences 
between extensions of concepts ) .  What is the sign ificance of this dis­
tinction ? In the ordinal view, number is thought as a l ink in a chain, 
it is an element of a total order. In the cardinal view, it is rather the 
mark of a 'pure quantity' obtained through the abstraction of domains 
of objects having 'the same quantity ' .  The ordinal number is thought 
according to the schema of a sequence, the cardinal number, accord­
ing to that of a measurement. 
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4.3 .  Dedek ind affirms that infinite number (the totality of whole 
numbers, for example) precedes, in construction, finite number (each 
whole number, its successor, and so on ) .  Thus the existence of an 
infinite ( i ndeterminate) system, and then the particular existence of 
N (the set of natural whole numbers )  form the contents of the para­
graphs numbered 66 and 72 in Dedekind's text, whereas a result as 
apparently elementary as 'every number n is d ifferent from the fol­
lowing number n

" comes only in paragraph 8 1 .  
Dedekind i s  a true modern. He knows that the infinite is simpler 

than the finite, that it is the most general attr ibute of being, an intu­
ition from which Pascal had already drawn radical consequences -
and was the first to do so - as to the site of the subject. 

4.4. Dedekind first of all invites us to accept the philosophical concept 
of 'system', or any multipl icity whatsoever (compare 4. 1 ) .  The prin­
cipal operator will then be, as in Frege (2 .3 ) ,  the idea of biunivocal 
correspondence between two systems. Dedekind, however, will make 
use of it in a total ly different way than did Frege. 

Let's note in passing that the biunivocal correspondence, bijection, 
is the key notion of all the thinkers of number of this epoch.  It orga­
n ises Frege's thought, Cantor's and Dedekind's .  

4.5.  Dedekind cal ls the function, or correspondence, a 'transforma­
tion',4 and what we would ca l l  a bi jective function or a biun ivocal 
correspondence he ca l l s  a 's imilar transformation' . s In any case, we 
are dea l ing with a function ( wh ich makes every element of a set (or 
system) S' correspond to an element (and one only) of a set S, in such 
a way that: 

- to two di fferent elements 5 1  and 52 of S wil l  correspond two dif­
ferent elements ((sd  and ((52 ) of S/; 

- every element of S' is the correspondent, through (, of an element 
of S .  

A distinct (today we would say  injective) function is a function 
that complies only with the first condition: 

Evidently, such functions can be defined 'in' a system S, rather 
than 'between' a system S and another system S/. Funct ions (or 
transformations) of this type make every e lement of S correspond 
to an element of S (either another element or the same one: the 
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function could be  the function of identity, at least for the element in  
question ) .  

4.6. Take, then, a system S, an application ( (not necessari ly one o f  
l ikeness o r  a biunivocal one) o f  S to  itsel f, and  s, an element o f  S. We 
will call the chain of the element s for the application (, the set of 
values of the function obtained by iterating it starting from s. So the 
chain of s for (is the set whose elements are: s, ((s ) , (((( s ) ) ,  ((((((s) ) ) ,  . . .  , 
etc . 

We are not necessarily dealing here with an infinite iteration: it 
could very well be that, at a certain stage, the values thus obtained 
would repeat themselves . This is evidently the case if S is finite, s ince 
the possible values, which are the elements of S (the appl ication ( 
operates from S within S ) ,  wil l  be exhausted after a finite number of 
stages. But it would also be the case were one to come across a value 
p of the function ( where, for p, ( is identical .  Because then ((p )  = p, 
and therefore ((((p ) )  = ((p)  = p.  The function halts at p.  

4.7. We wil l  say that a system N is ( th is  is Dedekind's expression) 
simply in{inite6 i f  there exists a transformation ( of N within N that 
complies with the three following conditions: 

1 The application ( of N within N is a distinct application (d. 
4.5 ) .  

2 N is the chain of one of its elements, which Dedekind denotes by 
1 ,  and which he calls the base-element of N. 

3 The base-element 1 is not the correspondent through ( of any 
element of N. In other words, for any n which is part of N, 
f(n )  ...;:. 1 :  the function ( never ' returns'  to 1 .  

We can form a simple enough image of such an N. We 'start' with 
the element 1. We know (condition 3 )  that (( 1 )  is an element of N 
different from 1 .  Next we see that (((( 1 ) ) is different from 1 (which 
is never a value for f) .  But, equally, (((( 1 ) ) is different from (( 1 ) . In 
fact, the function ( (condition 1)  is a distinct transformation - so two 
different elements must correspond, through (, to different elements. 
From the fact that 1 is different from (( 1 )  it fol lows that (( 1 )  is dif­
ferent from (((( 1 ) ) .  More generally, every element obta ined through 
the iteration of function ( wil l  be different from all those that 'pre­
ceded ' it. And, s ince N (condition 2) is nothing other than the chain 
thus formed, N will be composed of an ' infinity' ( in  the intu itive 
sense ) of elements, all di fferent, ordered by function (, in the sense 
that each element 'appears' through an additional step of the 
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process that begins with 1 and is cont inued by repeatedly applying 
operation f. 

4.8 .  The 'system' N thus defined is the place of number. Why? 
Because al l  the usual 'numerical '  manipulations can be defined on the 
elements n of such a set N. 

By virtue of the function f, we can pass without difficulty to the 
concept of the 'successor' of a number: if n is a number, fIn ) is its 
successor. It is here that Dedekind's 'ordinal '  orientation comes into 
effect: function f, via the mediation of the concept of the chain, is 
that which defines N as the space of a total order. The first 'point' 
of this order is obviously 1 .  For phi losophical reasons (compare 
1 . 1 7) ,  Dedekind prefers a denotation beginning with 1 to one begin­
ning with 0; ' 1 '  denotes the first link of a chain, whereas zero is 
'cardinal '  in its very being: it marks lack, the class of al l  empty 
extensions. 

With 1 and the operation of succession it wil l  be easy to obta in, 
firstly, the primitive theorems concern ing the structure of the 
order of numbers, and then the definition of arithmetical operations, 
add ition and multiplication . On the sole basis of the concepts 
of 'system' ( or set) and of 's imilar transformation' (or biunivocal 
correspondence ) ,  the 'natura l '  kingdom of numerical ity will be 
rediscovered. 

4.9. A system N, structured by a function f which complies with the 
three conditions above (4 .7 )  wil l  be cal led 'a system of numbers' ,  a 
place of the set of numbers. To cite Dedekind :7  

I f, in  the  consideration of a s imply infinite system N,  set in order by 
a transformation t, we entirely neglect the special  character of the ele­
ments, simply reta in ing their d i st inguishabi l i ty and taking into account 
only the relations to one another in  which they are placed by the order­
setting transformation t, then are these elements called natura/ numbers 
or ordinal numbers or simply numbers, and the base-element 1 is cal led 
the base-number of the number-series N. With reference to this freeing 
the e lements from every other content ( abstraction),  we are j ustified in 
cal l i ng numbers a free creation of the human mind.  

The enthusiastic tone leaves no room for doubt: Dedekind is con­
scious of having, with his purely functional and ordinal engendering 
of 'system' S, torn number away from any form of external j urisdic­
tion, in the direction of pure thought. Th is was already the tone, and 
these the stakes, of the 'proclamation' that appeared in the Preface 
to the first edition of his  pamphlet: 'In speaking of arithmetic (a lgebra, 
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analysis) as a part of logic, I mean to imply that I consider the number 
concept to be entirely independent of the notions or intuitions of 
space and time, that I consider it more as an immediate result of the 
laws of thought. '  This is a text that, as wil l  be appreciated, lends 
itself to a Kantian interpretation: the whole problem for modern 
thinkers of number is to navigate within the triangle Plato-Kant­
Leibniz.8 In defining, not 'a '  number, but N, the simply infinite 
'system' of numbers, Dedekind considers, with legitimate pride, that 
he has establ ished h imself, by means of the power of thought alone, 
in the intell igible place of numericality. 

4. 10.  Informed by Frege's difficulties, wh ich do not concern his 
concept of zero and of number, but the transition from concept to 
existence or the j urisdiction of language over being, we ask: does a 
system of numbers, a 'simply infinite' system N, exist?  Or wil l  some 
unsuspected 'paradoxes' come to temper, for us, Dedekind's intel­
lectual enthusiasm? 

4. 1 1 .  Dedekind is evidently concerned about the existence of his 
system of number. In order to establish it ,  he proceeds in three 
steps: 

1 Intrinsic definition, with no recourse to phi losophy or to intuition, 
of what an infinite system (or set) i s .  

2 Demonstration (this, as we shal l  see, h ighly speculative) of the 
existence of an infinite system. 

3 Demonstration of the fact that al l  infinite systems 'contain as 
a proper part a simply infinite system N' .  

These three steps permit the following conclusion to  be  drawn: 
since at least one infinite system exists, and every infinite system has 
as a subsystem an N - a simply infinite system or 'p lace of number' 
- then this place exists. Which is to say: number exists . The idea that 
'arithmetic should be a part of logic ,9  signifies that, by means of the 
conceptual work of pure thought alone, I can guarantee the consis­
tency of an intel l igible place of numerical ity, and the effective exis­
tence of such a place. 

4.12.  Dedekind's definition of an infinite set is remarkable. He 
himself was very proud of it, and with good reason. He notes that 
'the definition of the infinite . . .  forms the core of my whole investiga­
tion. All other attempts that have come to my knowledge to distin­
guish the infinite from the finite seem to me to have met with so l ittle 
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success that I think I may be permitted to forgo any critique of 
them, ' l 0 

This definition of the infinite systematises a remark already made 
by Gal i leo: there is a biunivocal correspondence between the whole 
numbers and the numbers that are their squares . Suffice to say, f(n) 
= n2 • However, the square numbers constitute a proper part of the 
whole numbers (a proper part of a set is what we call a part that is 
di fferent from the whole, a truly 'partia l '  part ) .  It seems, therefore, 
in examining intuitively infinite sets, that there exist biunivocal cor­
respondences between the sets as a whole and one of their proper 
parts . This part, then, has 'as many' elements as the set itself. Gali leo 
concluded that it was absurd to try to conceive of actual infinite sets . 
S ince an infinite set is 'as large' (contains 'as many' elements ) as one 
of its proper parts, the statement 'the whole is greater than the part' 
is apparently false in the case of infinite total ities. Now, this statement 
is an axiom of Euclid's Elements, and Gali leo did not think it could 
be renounced. 

Dedekind audaciously transforms this paradox into the definition 
of infinite sets : 'A system S is said to be infinite when it is similar to 
a proper part of itsel f. In the contrar} case, S is said to be a finite 
system, ' l l (Remember that, in Dedekind's terminology, 'system' 
means set, and the s imi larity of two systems means that a biunivocal 
correspondence exists between them) .  

4. 1 3 .  The most striking aspect of .Dedekind's definition i s  that it 
determines infinity positively, and subordinates the finite negatively. 
This is its especial ly modern accent, such as is almost always found 
in Dedekind. An infinite system has a property of an existential 
nature: there exists a biunivocal correspondence between it and one 
of its proper parts . The fin ite is that for which such a property does 
not obtain . The finite is simply that which is not infin ite, and al l  the 
positive simplicity of thought h inges on the infinite. This intrepid 
total secularisation of the infin ite is a gesture whose virtues we ( inept 
partisans of 'finitude' , wherein our rel igious dependence can sti l l  be 
read) have not yet exhausted . 

4 . 14 .  The third point of Dedekind's approach (that every infinite 
system contains as one of its parts a system of type N, a place of 
number, see 4. 1 1 )  is  a perfectly elegant proof. 

Suppose that a system S is infinite. Then, given the definition of 
infinite systems, there exists a biunivocal correspondence f between 
S and one of its proper parts S'. In other words a bijective function 
f that makes every element of 5 correspond to an element of 5'. Since 
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5' is a proper part of 5,  there is a t  least one element of 5 that is not 
in the part 5' ( otherwise 5 = 5', and 5' is not a 'proper' part ) .  We 
choose such an element, and call it 1 .  Consider the chain of 1 for the 
function f ( for 'chain' d. 4.6 ) .  We know that: 

• f is a distinct ( in jective ) transformation, or function, s ince it is 
precisely the biunivocal correspondence between 5 and 5', and a l l  
biunivocal correspondence is distinct; 

• 1 certainly does not correspond through f to any other term of 
the chain, since we have chosen 1 from outside of 5', and f only 
makes elements of S' correspond to elements of 5. An element s 
such that f(s )  = 1 therefore cannot exist in the chain.  In the chain, 
the function never ' returns' to 1 .  

The chain o f  1 for f in 5 is ,  then, a simply infinite set N :  it complies 
with the three conditions set for such an N in 4 .7 above. 

We are thereby assured that, if an infinite system 5 exists, then an 
N, a place of number, also exists as part of that 5 .  Dedekind's thesis 
is ultimately as fol lows: if the infinite exists, number exists . This point 
(taking account of the ordinal definition of number as the chain of 
1 for a similar transformation, and of the definition of the infinite )  
is exactly demonstrated. 

4. 15 .  But does the infinite exist ? There lies the whole question. This 
is point two of Dedekind's approach, where we see that, for Dede­
kind, the infinite, upon which the existence of number depends, 
occupies the place which for Frege is occupied by zero. 

4.16.  To construct the proof upon which henceforth al l  wi l l  rest ( the 
consistency and the existence of an infin ite system or set ) ,  Dedekind 
briskly canvasses al l  his initial philosophical presuppositions (the 
thing as object of thought) .  Of course, these presuppositions already 
quietly prop up the very idea of a 'system' (col lection of anything 
whatsoever) .  But, seized by the superbly smooth surface of the sub­
sequent definitions (chain, simply infinite set) and proofs, we had the 
time to let this fragil ity slip from our minds. We could do no better 
than to cite here Dedekind's 'proof' of what is put forward bl ithely 
as the 'theorem' of paragraph 6 6 : 1 2 

66. Theorem: There exist infinite systems. 

Proof: My own realm of thoughts, i .e. the tota l i ty S of all things, which 
can be objects of my thought, i s  infinite .  For, i f  5 signifies an element 
of S, then is the thought 5'

, that 5 can be an object of my thought, itse l f  
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an element of S. If we regard th is  as transform ((s )  of the element s, 
then has the transformation ( of S, thus determined, the property that 
the transform S' i s  a part of S; and S' is certa in ly a proper part of S, 
because there are elements in S ( e .g. my own ego) which are d ifferent 
from every such thought s' and therefore are not contained in S'. 
Final ly it i s  clear that, i f  Sl and S2 are different elements of S, their 
transforms 5 1

' and sz' are also di fferent, that therefore the transforma­
tion ( i s a distinct ( s imi lar )  transformation.  Hence S is infin ite, which 
was to be proved. 

4. 1 7. Once our stupor dissipates ( but it is of the same order as 
that which grips us in reading the first propositions of Spinoza 's 
Ethics ) ,  we must proceed to a close examination of this proof of 
existence. 

4. 1 8 .  Some technical specifics: The force of the proof lies in the 
consideration of the correspondence between an 'object of my thought' 
and the thought 'th is is an object of my thought' - that is to say, the 
correspondence between a thought and the thought of that thought, 
or reflection - as a function operating between elements of the set of 
my possible thoughts ( in fact, we may as well identify a 'possible 
object of my thought' with one possible thought) .  This function is 
'distinct' (we would now say injective ) ,  because it possesses the prop­
erty (which biunivocal correspondences also possess) that two dis­
tinct elements a lways correspond via the function to two distinct 
elements . Given two thoughts whose objects distinguish them from 
each other, the two thoughts of these thoughts are distinct (they also 
have distinct objects, s ince they think of distinct thoughts ) .  Conse­
quently there is a biunivocal correspondence between thoughts in 
genera l and thoughts of the type 'thought of a thought' .  Or, if you 
prefer, there is such a correspondence between thoughts whose object 
is anything whatsoever and thoughts whose object is a thought. Now 
this second set forms a proper part of the set of a l l  possible thoughts, 
s ince there are thoughts which are not thoughts of thoughts: the 
striking example Dedekind gives is what he cal ls 'the ego' .  Thus the 
set of a l l  my possible thoughts, being in biunivocal correspondence 
with one of its proper parts, is infinite. 

4. 19.  Dedekind's approach is a singular combination of Descartes ' 
Cogito and the idea of the idea in Spinoza. 

The starting point is the very space of the Cogito, as 'closed' con­
figuration of all possible thoughts, existential  point of pure thought. 
It is  cla imed ( but only the Cog ito assures us of this) that something 
like the set of all my possible thoughts exists . 
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From Spinoza 's causal 'seri al ism' ( regardless of whether or not he 
figured in Dedekind's historical sources ) are taken both the existence 
of a 'parallelism' which a l lows us to identify simple ideas by way of 
their object (Spinoza says : through the body of which the idea is an 
idea) ,  and the existence of a reflexive redoubling, which secures the 
existence of 'complex' ideas, whose object is no longer a body, but 
another idea. For Spinoza, as for Dedekind, this process of reflexive 
redoubl ing must go to infinity. An idea of an idea (or the thought of 
a thought of an object) is an idea. So there exists an idea that is the 
idea of the idea of the idea of a body, and so on. 

All of these themes have to be in place in order for Dedekind to 
be able to conclude the existence of an infinite system. There must 
be a circumscribed 'place ' ,  representable under the sign of the One, 
of the set of my possible thoughts . We recognise here the soul, the 
'thinking thing' as paradigmatical ly established by Descartes, in its 
existence and essence ( pure thought) ,  in the Cogito. An idea must be 
identifiable through its object, so that two different ideas correspond 
to two different objects : this alone authorises the biunivocal character 
of the correspondence. And, ultimately, it must be that the reflexive 
process goes to infinity, since, if it did not, there would exist thoughts 
with no correspondent through the function, thoughts for which 
there were no thoughts of those thoughts. This would ruin the argu­
ment, s ince it would no longer be establ ished that to every element 
of the set of my possible thoughts S there corresponds an element of 
the set of my reflexive thoughts S'. Ultimately - above al l ,  I would 
say - there must be at least one thought that is not reflexive, that is 
not a thought of a thought. This alone guarantees that S', the set of 
reflexive thoughts, is a proper part of S, the set of my possib le 
thoughts. This time, we recognise in this fixed point of difference the 
Cogito as such - what Dedekind calls 'my own ego' .  That which does 
not allow itself to be thought as thought of a thought is the act of 
thinking itself, the '[ think '. The 'I think' is non-decomposable; it is 
impossible to grasp it as a thought of another thought, s ince every 
other thought presupposes it. 

It is therefore no exaggeration to say that for Dedekind, ultimately, 
number exists in so far as there is the Cogito as pure point of exis­
tence, underlying al l  reflection ( specifically, there is an 'I think that 1 
think ' ) ,  but itsel f  situated outside of a l l  reflection. The existential 
foundation of the infinite, and therefore of number, is what Sartre 
calls the 'pre-reflexive Cogito' .  

And here we discover a variant of Jacques-Alain Mil ler's thesis :  
what subtends number is the subject. The difference is that,  whereas 
for Mil ler it is the 'process of engendering' of number that requires 
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the function of the subject, for Dedekind it is the existence of the 
infinite as its place. The Fregean programme of the conceptual deduc­
tion of zero and the Dedekindian programme of the structural deduc­
tion of the infinite lead back to the same point: the subject, whether 
as insistence of lack or as pure point of existence. To the Lacanian 
subject can be ascribed the genesis of zero, to the Cartesian subject: 
the existence of the infinite. As if two of the three great modern chal­
lenges of thinking number (zero, the infinite, the downfall of the 
One) ,  once the third is  assumed in the guise of a theory of sets, 
can only be resolved through a radical employment of that great 
philosophical category of modernity: the subject. 

4.20. I could simply say that, j ust as I am not enough of a Leibnizian 
to fol low Frege, I am equally neither Cartesian nor Spinozist enough 
to fol low Dedekind. 

4.2 1 .  Against Dedekind's Spinozism: Far from the idea of an infinite 
recurrence of the thought of a thought of a thought of a thought of 
a thought, and so on, being able to found the existence of the place 
of number, it presupposes it. In fact, we have no experience of this 
type. Only the existence - and consequently the thought - of the 
sequence of numbers al lows us to represent, and to make a numerical 
fiction of, a reflection which reflects itself endlessly. The very possibi l ­
ity of stating a 'thought' at,  say, the fourth or fifth level of reflection 
obviously relies on an abstract knowledge of numbers as a condition. 
As to the idea of a reflection that 'goes to infinity' , this obviously 
contains precisely what we are trying to demonstrate, namely the 
effect of infinity in thought: an effect whose only known medium is 
the mathematics of number. 

4.22. As regards questions of existence, Spinoza h imself made certain 
not to proceed as Dedekind does. He never sought to infer the exis­
tence of the infinite from the recurrence of ideas. It is, rather, precisely 
because he postulated an infinite substance that he was able to estab­
lish that the sequence that goes from the idea of a body to ideas of 
ideas of ideas, and so on, is infinite . For Spinoza, and he is quite j usti­
fied in this, the existence of the infinite is an axiom. His problem is 
rather 'on the other side ' ,  the side of the body (or, in Dedekind's 
terms, that of the object ) .  For, if there is a rigorous paral lelism 
between the chain of ideas and the chain of bodies, then there must 
be, correspond ing to the idea of an idea, the 'body of a body' ,  and 
we are unable to grasp what the reality of such a thing might be. 
Dedekind evades this problem because the place of thinking he 
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postulates assumes Cartesian closure:  the corporeal exterior, the 
extensive attribute, does not intervene in it. But, in seeking to draw 
from Spinozist recurrence a conclusive ( and non-axiomatic ) thesis on 
the infinite, he produces only a vicious circle. 

4.23. Against Dedekind's Cartesianism: It is essential to the proof 
that every thought can be the object of a thought. This theme is 
incontestably Cartesian: the ' I  think' subtends the being of ideas in 
general as a 'material '  of thought, and it is clear that there is no idea 
that cannot be a thinkable idea, that is to say ( s ince we are speaking 
of the set of my possible thoughts ) virtually actual isable as object of 
my thought. But obviously this excludes the poss ibi l ity that ' it ' I 3 

could th ink without my thinking that I think that thought, and 
without it being even possible to do so. Dedekind is Cartesian in his 
exclusion of the unconscious, which, since Freud, we know to think, 
and to think in such a way that some of its thoughts can be defined 
precisely as those that 1 cannot th ink.  'Unconscious thoughts' are 
precisely those unable, at least directly, to become objects of my 
thought. 

More generally, it is doubtful, for a contemporary phi losopher, 
whether true thoughts, those that are included in a generic procedure 
of truth, could ever be exposed as such in the figure of their reflection. 
This would be to imagine that their translation onto the figure of 
knowledge (which is the figure of reflection) is coextensive with them. 
Now the most solid idea of contemporary phi losophy is precisely not 
to understand the process of truth except as a gap in  knowledge. If 
'thought' means: instance of the subject in a truth-procedure, then 
there is no thought of th is thought, because it contains no knowledge. 
Dedekind's approach founders on the unconscious, and does not hold 
firmly enough to the distinction between knowledge and truth. 

4.24. Descartes h imself is more prudent than Dedek ind. He makes 
certain not to infer the infinite from reflection, or from the Cogito as 
such.  He does not consider, in proving the existence of God, the 
totality of my possible thoughts, as Dedekind does . On the contrary, 
he singularises an idea, the idea of God; his local argument might be 
contrasted with Dedekind's global, or set-theoretical ,  argument. Des­
cartes ' problem is elsewhere, it is a Fregean problem: how do we pass 
from concept to existence ? For this, an argument positing a dispro­
portion between the idea and its place is necessary :  the idea of the 
infinite is without common measure with its place, which is my soul 
- or, in Dedekind's terms, the set of my possible thoughts; because 
this place, grasped in its substantial being, is finite. The singular idea 
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of the infinite must therefore 'come from elsewhere' ;  it must come 
from a real infinity. 

We can see how, in the end, Descartes' and Dedekind's positions 
are reversed. For Dedekind, it is the place that is infinite, because it 
must support reflection ( the capacity of the Cogito) in its going to 
infinity. For Descartes, it is the exterior of the place (God) that is 
infinite, s ince the place of my thought, guaranteed in its being by the 
Cogito, is finite, and is therefore not capable of supporting alone the 
idea of the infinite. But, in seeking to break with the finitude of the 
place, Dedekind forgets that this place could well be nothing but a 
scene fabricated by an Other place, or that thought could wel l find 
its principle only in a presupposition of infinite number, of which it 
would be the finite and irreflexive moment. 

4.25 . Immanent critique: Dedekind's starting point is 'the rea lm of 
all possible objects of my thought' , which he immediately decides to 
call system S .  But can this domain be considered as a system, that is 
to say, a set? Do the 'possible objects of my thought' form a set, a 
consistent multipl icity, which can be counted as one ( leaving aside 
the thorny question of knowing what carries out this accounting of 
my thoughts ) ?  Isn't it rather an inconsistent multiplicity, in so far as 
its total recollection is, for thought itself, precisely impossible ?  If one 
admits the Lacanian identification of the impossible and the real ,  
wouldn 't the 'system' of all possible objects of my thoughts be the 
real of thought, in the guise of the impossibi l ity of its counting-for­
one ? Before establish ing that the 'rea lm of all possible objects of my 
thought' is an infin ite system, then, we must establish that it is  a 
system (a set) at a l l .  

4.26. In the same way in which Russel l ' s  paradox comes to spoil 
Frege 's derivation of number on the basis of the concept, the 'paradox' 
of the set of all sets - a descendant of the former - comes to break 
Dedekind's deduction of the existence of the infinite, and conse­
quently the deduction of the existence of N, the 'simply infin ite' set 
which is the place of number. Conceptually set out by Dedekind with 
impeccable inferences, the place of number does not stand the test of 
consistency, which is also that of existence. 

4.27. Reasoning 'a la Dedekind' :  Any system whatsoever (a set ) ,  
grasped in abstraction from the singularity of i ts  objects or ,  as Dede­
kind says, thought uniquely according to 'that which distinguishes' 
these objects ( thus, the ir  simple belonging to a system and its laws ) ,  
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is obviously a possible object of my thought. Consequently, within 
the supposed system S of all possible objects of my thought must 
figure, as a subsystem (subset ) ,  the system of all systems, the set of 
al l  sets. By virtue of this fact, th is system of al l  systems is itself a 
possible object of my thought. Or, in simpl ified terms, the system of 
al l  systems is a thought. 

Now, this is an impossible situation. In fact, a fundamental prin­
ciple of Dedekind's demonstration has it that every thought gives rise 
to a thought of this thought, wh ich is different from the origina l  
thought. So if there exists a thought of the set of a l l  sets , there must 
exist a thought of this thought, which is in S, the set of a l l  my possible 
thoughts. S is then larger than the set of a l l  sets, s ince it conta ins at 
least one element (the thought of the set of al l  sets ) that does not 
figure in the set of all sets. Which cannot be, since S is a set, and 
therefore must figure as an element in the set of a l l  sets . 

Or, once again:  considered as a set or system, S, the domain of a l l  
the possible objects of my thought, is an element of the set of al l  sets . 
Considered in its serial or reflexive capacity, S overflows the set of 
al l  sets, since it contains the thought of that thought which is the set 
of al l  sets . S is thus at once inside (or 'smaller than ' )  and outside (or 
' larger than ' )  one of its elements : the thought of the set of al l  sets . 
We must conclude then , excluding logical inconsistency, either that 
the set of al l  sets, the system of al l  systems, is not a possible ob;ect 
of my thought, even though we have j ust thought it; or, more reason­
ably, that the domain of all possible objects of my thought is not a 
system, or a set . But, in that case, it cannot be used to support the 
proof of the existence of an infinite system. 

4.28. Reasoning more mathematical ly now: Suppose that the set of 
al l  sets exists (which implies necessarily the existence as set of the 
domain of al l  possible objects of my thought) . Then, s ince it is a set, 
we can separate (Zermelo's axiom, 2 . 12 ) ,  as an existent set, all of the 
elements that have a certain property in common. Take the property 
'not being an element of itself' .  By means of separation this time, and 
therefore with the guarantee of existence already in place, we 'cut 
out' from the set of a l l  sets, which we suppose to exist, the set of all 
the sets which do not belong to themselves. This set then exists, which 
Russel l 's paradox tells us is impossible (admitting the existence of the 
set of al l  sets which do not belong to themselves leads directly to a 
formal contradiction, d. 2 . 1 1 ) .  So it is impossible that the set of a l l  
sets should exist, and a fortiori that the domain of a l l  my possible 
thoughts could be a set. 
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4.29. Dedekind's attempt ultimately fai ls at the same point as did 
Frege's :  in the transition from concept to assertion of existence . And 
at the root of the affair is the same thing: Frege and Dedekind both 
seek to deduce from 'pure logic ' ,  or thought as such, not j ust the 
operational rules of number, but the fact of its existence for thought. 
Now, just like the empty set, or zero, the infinite will not be deduced: 
we have to decide its existence axiomatically, which comes down to 
admitting that one takes this existence, not for a construction of 
thought, but for a fact of Being. 

The s ite of number, whether we approach it, l ike Frege, 'from 
below' ,  on the side of pure lack, or, like Dedekind, 'from above' , 
from the side of infinity, cannot be established logically, by the pres­
sure of thought a lone upon itself. There has to be a pure and simple 
acknowledgement of its existence: the Axiom of the Empty Set founds 
zero, and, as a result of this, the finite cardinals exist. The Axiom of 
Infin ity founds the existence of the infinite ordinals, and from there 
we can return to the existence of finite ordinals .  The challenges posed 
to the moderns by the thinking of number cannot be met through a 
deduction, but only through a decision. And what subtends this deci­
sion, as to its veridicality, relates neither to intuition nor to proof. It 
relates to the decision's conformity to that which being qua being 
prescribes to us. From the fact th at the One is not, it fol lows, with 
regard to zero and the infinite, that nothing can be said other than:  
they are. 

4 .30.  Nevertheless, we must give Dedekind immense credit for three 
crucial  ideas.  

The first is that the best approach to number is a general theory 
of the pure multiple, and therefore a theory of sets. This approach, 
an ontological one, entirely distinguishes him from the conceptual or 
logicist approach, as found in Frege. 

The second is that, with in  this framework, we must proceed in 
'ordinal '  fashion, erecting a sort of universal series where number 
will come to be grasped. Certainly, the theory of ordinals must be 
removed from its overdependence on the idea of order, sti l l very much 
present in Dedek ind. Because, as I objected to Jacques-Alain Mil ler, 
there is no reason to presume that the being of number will be await­
ing us along the ordered route that we propose to it. The concept of 
the ordinal must be sti l l  further ontologised, rendered less opera­
tional, less purely seria l .  

The third of Dedekind's great inspired ideas is that, to construct 
a modern thinking of number, a non-Greek thinking, we must begin 
with the infinite. The fact that it is vain to try to give this beginning 
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the form of a proof of existence is ultimately a secondary matter, 
compared to the idea of the beginning itself. It is  truly paradigmatic 
to have understood that, in order to think finite number, natural 
whole number, it is necessary first to think, and to bring into exis­
tence - by way of a decision that respects the h istorial  nature of being, 
in so far as our epoch is that of the secularisation of the infinite (of 
which its numericisation is the first instance) - infinite number. 

On these three points, Dedekind is truly the closest companion, 
and in certain respects the ancestor, of the father - sti l l  misunderstood 
- of the great laws of our thought: Cantor. 



5 

Peano 

5 . 1 .  Peano's work is certainly not comparable in profundity or in 
novelty either to Frege's or to Dedekind's. His success l ies more in 
the clarification of a symbolism, in the firm assurance of the connec­
tion between logic and mathematics, and in a real talent for discern­
ing and denoting the pertinent axioms. One cannot speak of number 
without tackling the famous 'Peano axioms' at their source; they have 
become the reference text for any kind of formal introduction on the 
natural whole numbers. 

5.2. Even though, from the very beginning of his Principles of Arith­
metic, 1 - written, del iciously, in Latin - Peano speaks of 'questions 
that pertain to the foundations of mathematics' ,  which he says have 
not received a 'satisfactory solution ' ,2 the approach he adopts is not 
so much a fundamental meditation as a 'technicisation' of proce­
dures, with a view to establ ishing a sort of consensus on manipulation 
( someth ing in which, in fact, he succeeds perfectly ) .  This is the sense 
in which we ought to understand the phrase: 'The difficulty has its 
main source in the ambiguity of language. ' 3 To expound number in 
the clarity of a language - an artificial clarity, certainly, but legible 
and indubitable - this is what is at stake in Peano's work . 

5 .3 .  In terms of its content, the approach is modelled on Dedekind's. 
We 'start' from an initial term, which, as with Dedekind, is not 
zero but one. We 'put to work ' the successor function (denoted in 
Peano according to the additive intuition: the successor of n is written 
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n + 1 ) . We rely heavi ly on induction, or reasoning by recurrence. But, 
whereas Dedekind, who works in a set-theoretical framework, deduces 
the va lidity of this procedure, in Peano it is treated purely and simply 
as an axiom. We decide that: 

- if 1 possesses a property, 
- and if it is true that, when n possesses a property, then n + 1 also 

possesses it, 
- then, all numbers n possess the property . 

Armed with this inductive principle and with purely logical axioms 
whose presentation he has clarified, Peano can define al l  the classical 
structures of the domain of whole numbers: total order and a lgebraic 
operations (addition, multipl ication ) .  

5.4. The axiom of induction, or of recurrence, marks the di fference 
in thinking between Peano and Dedekind on the crucial issue of the 
infinite. Treated as a simple operational principle, recurrence actually 
permits legislation over an infinite total ity without making mention 
of its infinity. 

It is clear that there is an infinity of whole numbers . To speak of 
'al l '  these numbers therefore means to speak of an actual infinity. But 
in Peano's axiomatic apparatus, this infin ity is not introduced as such . 
The axiom of recurrence permits us, from a verification ( 1  possesses 
the property ) and an implicative proof ( if n possesses the property, 
then n + 1 a lso possesses it), to conclude that 'all numbers possess 
the property', without having to inquire as to the extension of this 
'al l ' .  The universal quantifier here masks the thought of an actual 
infin ity: the infinite remains a latent form, inscribed in the quantifier 
without being re leased into thought. 

Thus Peano introduces the concept of number without transgress­
ing the old prohibition on actual infinity, a prohibition that sti l l  hangs 
over our thought even as the latter is summoned to its abolition by 
the modern injunction of being. Peano's axiomatic evades the infinite, 
or explicit mention of the infinite. 

For Dedekind, on the other hand, not only the concept of the 
infinite, but also its existence, is absolutely crucial .  Dedekind says 
this explicitly in a letter to Keferstein:4 

After the essentia l  nature of the simply infinite system, whose abstract 
type is the number sequence N, had been recognized in my analysis 
. . .  the question arose: does such a system exist at a l l  in  the rea lm of 
our ideas?  Without a logical proof of exi stence it would a lways remain 
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doubtfu l whether the notion of such a system might not perhaps 
conta in  internal contrad ictions. Hence the need for such proofs .  

5 .5 .  Peano does not broach questions of existence. When a system 
of axioms is applied to operational arrangements, we wil l  be able, if 
necessary, to enquire as to that system's coherence; we need not 
speculate on the being of that which is interrogated. The vocabulary 
of the 'th ing', or object, common to Frege and Dedekind (even if it 
is a matter of 'mental things' in  the sense of Husserl ' s  noematic cor­
relate ) is dropped in Peano's work, in favour of a somewhat 'post­
modern' sensibi l ity where the sign reigns. For example, he writes: 'I 
have denoted by signs all ideas that occur in the principles of arith­
metic, so that every proposition is stated only by means of these 
signs. ,5 If the latent model in Dedekind and of Frege is phi losophical 
( 'phi losophy as rigorous science ' ) ,6 in Peano it is directly algebraic: 
'With these notations, every proposition assumes the form and the 
precision that equations have in algebra . . .  the procedures are similar 
to those used in solving equations . ' 7  

The 'economy of number' proposed by Peano is an economy of 
signs whose paradigm is algebraic, whose transparency is consensual, 
and whose operational effectiveness is therefore not in doubt. He thus 
participates forceful ly in that movement of thought, victorious today, 
that wrests mathematics from its antique philosophical pedestal and 
represents it to us as a grammar of signs where all that matters is the 
making explicit of the code . Peano prepares the way from afar - by 
el iminating al l  idea of a being of number, and, even more so, that of 
number as being - for Carnap's major theses, which reduce mathe­
matics, treated as a ' formal language' (as opposed to empirical lan­
guages ) ,  not to a science ( because according to this conception every 
science must have an 'object ' ) ,  but to the syntax of the sciences. Peano 
is inscribed in the twentieth century's general movement of thought 
- forged, in fact, at the end of the nineteenth century - whose char­
acteristic gesture is the destitution of Platonism, in the guise of that 
which had always been its bastion :  mathematics, and especially the 
Idea of number. 

5.6. We see here, as i f  in the pangs of its birth, the real origin of 
what Lyotard calls the ' l inguistic turn' in  Western phi losophy, and 
what I cal l  the reign of the great modern soph istry: i f  it is true that 
mathematics, the highest expression of pure thought, in the final 
analysis consists of noth ing but syntactical apparatuses, grammars of 
signs, then a fortiori all thought fal ls under the constitutive rule of 
language. 
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It is certain that, for Plato, the subordination of language to 'things 
themselves', as dea lt with for example in the Cratylus, has as its 
horizon of certitude the ontological vocation of the matheme. There 
is no upholding the pure empire of the sign if number, which we 
indicate with just a simple stroke, is, as Plato thought, a form of 
Being. Conversely, if number is nothing but a grammar of special  
signs, ruled by axioms with no foundation in thought, then it becomes 
probable that phi losophy must be, first and foremost (as in Deleuze's 
reading of Nietzsche's 'diagnostics ' ) ,  a thinking of the force of signs. 
Either truth or the arbitrariness of the sign and the diversity of syn­
tactical games : this is the central choice for contemporary phi losophy .  
Number occupies a strategic position in th i s  conflict, because it i s  
simultaneously the most general ised basis of  thought and that which 
demands most abruptly the question of its being. 

Peano's axiomatic, poor in thought but strong in its effects, a 
grammar which subdues number, the organising principle of an oper­
ational consensus, a deft mediation of the infinite into the finitude of 
signs, represents something of a lucky find, a gift, for modern 
sophistry. 

5 .7. Every purely axiomatic procedure introduces undefined signs, 
which can only be presented by codifing their usage in axioms. Peano 
is hardly economical with these 'primitive' signs: there are four, in 
fact (you are reminded that set theory has recourse to one s ingle 
primitive sign E ,  belonging, which denotes presentation as such ) :  

Among the signs o f  arithmetic, those that can b e  expressed b y  other 
signs of arithmetic together with the signs of logic represent the ideas 
that we can define. Thus, I have defined all signs except four  . . .  I f, as 
I th ink,  these cannot be reduced any further, i t  i s  not possi ble to define 
the ideas expressed by them through ideas assumed to be known 
previously.8 

These four i rreducible signs are:9 

1 The sign N, which 'means number (positive whole number} ' .  
2 The sign 1 ,  which 'means unity' .  
3 The sign a + 1 ,  which 'means the successor of a' .  
4 The sign =, which 'means is equal to ' .  

Peano thus explicitly renounces a l l  definition of number, of suc­
cession, and of 1 .  (The case of the sign = might be treated separately: 
it is  in point of fact a logical  sign, not an arithmetica l  one. Peano 
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himself writes: 'We consider this s ign as new, although it has the form 
of a sign of 10gic . ' ) J O Evidently this is the price to be paid for opera­
tional transparency. Where Frege musters all thought towards 
attempting to understand the revolutionary statement 'zero is a 
number' ,  Peano simply notes ( it is the first axiom of his system) :  1 E 

N, a formal correlation between two undefined signs that 'means' 
( but according to what doctrine of meaning ? )  that 1 is a number. 
Where Dedekind generates the place of number as the space of pos­
s ible employment, or the real ly existing infinite chain, of a biunivocal 
function, Peano notes: l l  a E N � a + 1 E N, an implication that 
involves three undefined signs, and which 'means' that, if  a i s  a 
number, its successor is also a number. The force of the letter is here 
at the mercy of meaning. And the effect is not one of obscurity, 
but rather one of an excessive l impidity, a cumbersome levity of 
the trace . 

5 .8 .  In the poem, the obscure is born of that which,  as a breaking 
open of the signifier at the l imits of language, disseminates the letter. 
In Peano's pure axiomatic, the retreat of sense issues from the fact 
that the force of the letter is turned back upon itself, and that it is 
only from outside that thought can come to it. Peano wishes to put 
off any confrontation with the latent poem the absence of which 
number - astra l figure of being ( 'cold with neglect and disuse, a 
Constel lation' ) 1 2  - unfai l ingly instigates and the effect of which Frege 
and Dedek ind unconsciously preserve in the desperate attempt to 
conjure forth into Presence now zero, now the infin ite . 

5 .9 .  Peano's axiomatic is a shining success story of the tendency of 
our times to see nothing in number except for a network of opera­
tions, a manipulable logic of the sign. Number, Peano thinks, makes 
signs about the sign, or is the Sign of signs. 

From this point of view, Peano is as one with the idea that the 
universe of science reaches its apex in the forgetting of being, homog­
enous with the reabsorption of numerical ity into the unthought of 
technical wil l . Number is truly machinic. Thus it can be maintained 
that the success of Peano's axiomatic participates in the great move­
ment that has given up the matheme to modern sophistry, by unbind­
ing it from al l  ontology and by s ituating it within the sole resources 
of language. 

5 . 10 .  It wil l  be a great revenge upon this operation to discover, with 
Skolem and then Robinson , 1 3 the semantic limits of the grammar of 
signs to which Peano had reduced the concept of number. We know 
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today that such a n  axiomatic admits o f  'non-standard' models, whose 
proper being differs greatly from all that we intuitively understand 
by the idea of natural whole number. So that Peano's system admits 
of models where there exist ' infinitely large' numbers, or models 
whose type of infinity exceeds the denumerable. Peano arithmetic is 
susceptible to 'pathological '  interpretations; it does not have the 
power to establish a un ivocal thought within the machinism of signs. 
Every attempt to reduce the matheme to the sole spatia I i  sed evidence 
of a syntax of signs runs aground on the obscure prodigal ity of being 
in the forms of the multiple. 

5 . 1 1 .  The essence of number wil l  not be spoken, either as s imple 
force of counting and of its rules, or as sovereignty of graphisms. We 
must pass into it through a meditation on its being. 

N is not an 'undefined' predicate, but the infinite place of exercise 
of that which succeeds the void (or zero ) ,  the existential seal which 
strikes there where it 1 4 insists on succeeding. 

What 'begins' is not the 1 as opaque s ign of 'unity ' ,  but zero as 
suture of al l  language to the being of the situation whose language 
it is .  

Succession is not the additive coding of a + 1 ,  but a singular dis­
position of certain numbers which are successors rather than their 
succeeding, and which are marked in their being by this disposition . 
We must know also that zero and the infinite are precisely that which 
does not succeed, and that they are so in the ir very being, in different 
ways; although both are located, by virtue of this fact, on the shores 
of a Noth ingness. 

Number is neither that which counts, nor that with which we 
count. This regime of numericality organises the forgetting of number. 
To think number requires an overturning: it is because it is an unfath­
omable form of being that number prescribes to us that feeble form 
of its approximation that is counting. Peano presents the inscription 
of number, which is our infirmity, our finitude, as the condition of 
its being. But there are more th ings, infinitely more, in the kingdom 
of Number, than are dreamt of in Peano's arithmetic. 
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Cantor: 'Wel l -Orderedness' 
and the Ordinals 

6. 1 .  The ordinals represent the genera l ontological horizon of numer­
icaliry. Following the elucidation of the concept of the ordinal, with 
which we shal l  presently occupy ourselves, this principle will govern 
everything that fol lows, and it is wel l  said that in this sense Cantor 
is the true founder of the contemporary thinking of number. In fact, 
Cantor l considered that the theory of ordinals constituted the very 
heart of his  discovery. Today, the working mathematician, for whom 
it suffices that there are sets and numbers and who does not worry 
at all about what they are, thinks of the ordinals rather as something 
of a curiosity. We must see in this mild disdain one of the forms of 
submission of the mathematician, in so far as he or she is exclusively 
working, to the imperatives of social numerical ity. Special ists in 
mathematical logic or set theory are doubtless an exception, even if 
they themselves often regret this exception: in spite of themselves, 
they are closest to the injunction of Being, and for them the ordinals 
are essentia l .  

6.2. I have sa id ,  in connection with Dedekind, that, in our present 
phi losophical discourse, we must assume as complete an 'ontologisa­
tion' of the ordinals as possible. The presentation of this concept 
by Dedekind or Cantor relates it essential ly to the notion of weIl­
orderedness - someth ing still very close to a simple serial or 
operational intuition of number. 

6 .3 .  Every schoolboy knows that, given two different whole numbers, 
one of them is larger and the other smaller. And he knows also that, 
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given a 'bunch' of numbers, there is one  and one  on ly  that is the 
smallest of the bunch . 

From this serial knowledge, if one abstracts out its general proper­
ties, the concept of the well-ordered set can be developed. 

6.4. A 'well-ordered' set is a set for which: 

• between the elements of the set, there is a relation of total order; 
given two elements, e and e', if < denotes the order-relation, then 
either e < e', e' < e, or e = e'; no two elements are 'non-comparable' 
by this relation ; 

• given any non-empty part of the set so ordered, there is a smallest 
element of this part (an element of this part that is smaller than 
al l  the others ) .  If P is the part considered, there exists p, which 
belongs to P and for which, for every other p' belonging to P, P 
< p' This element p wil l  be cal led the minimal element of P. 

If an element p is minimal for a part P, it alone possesses that 
property. For, if there were another, a p' different from p, then, because 
the order is total ,  either p < p' and p' would not be minimal, or p' < 
p and p would not be minimal. So we can speak without hesitation 
of the 'minimal element' of a part P of a wel l-ordered set. 

We can see that the general concept of the well -ordered set is 
merely a sort of extrapolation from what the schoolboy observes in 
the most fami l iar numbers: the natural whole numbers. 

6.5. A good image of a well-ordered set is as follows. Let E be such 
a set. 'Start' with the smal lest element of E, which, given condition 
2 above, must exist. Call th is element 1 .  Consider the part of E 
obtained by removing 1 ,  the part ( E  - 1 ) .  It too has a minimal 
element, which comes in a certain sense straight after 1 .  Call this 
element 2. Consider the part of E obtained by removing 1 and 2 to 
be the part (E  - ( 1 ,2 ) ) .  It has a minimal element, cal l  it 3, and so on . 
A well-ordered set presents itself l ike a chain, so that every l ink of 
the chain follows ( 'follows' mean ing: comes j ust after in the relation 
of total order) only one other, well determined ( it i s  the minimal 
element of what remains ) .  

6.6. Cantor's stroke of genius was  to  refuse to  l imit this image to 
the finite, and thereby to introduce infin ite numerations. He had the 
following idea : If I suppose the existence - beyond that sequence 
1 ,2,3,  . . .  , n, n + 1 ,  . . .  - of a whole number which is the 'first' well­
ordered set, the matrix of al l  others, an ' infinite ordinal number' (0, 



54 GENEALOGIES: FREGE. DEDEKIN D. PEANO. CANTOR 

and declare it larger than al l  the numbers that precede it, then what 
prevents me from continuing? I can very well treat 0) as the minimal 
element of a well-ordered set that comes in some sense after the set 
of a l l  the whole numbers. And I can then consider the 'numbers' 
0) + 1, 0) + 2, . . .  , 0) + n, . . .  , etc. I will arrive eventually at 0) + 0), 
and will continue once again. No stopping point is prescribed to me, 
so that I have a sort of total series, each term of which is the possible 
measure of every existent sequence. This term indicates to me that, 
however many came before it, it numbers every series of the 
same length . 

6 .7. Allow me to call ordinal the measure of the length of a wel l­
ordered set, from its minimal element to its 'end' .  The 'entire' sequence 
of ord inals would then provide us with a scale of measurement for 
such lengths.  Each ordinal would represent a possible structure of 
wel l-orderedness, determined by the way in which the elements 
succeed each other, and by the total number of these elements. This 
is why we say that an ordinal, whether finite (the ordinals which 
come before 0), and which are quite s imply the natural whole numbers ) 
or infinite ( those ordinals wh ich come after 0)), numbers a 'type of 
wel l -orderedness' . 

6 .8 .  To give a technical grounding for this idea, we wil l  consider the 
class of well -ordered sets that are isomorphic to one of the sets among 
them (and therefore isomorphic to each other) .  What should we 
understand by th is?  

Take two well-ordered sets, E and E', < the order-relation of E,  
and <' the order-relation of E'. I wi l l  say that E and E' are isomorphic 
if there exists a biun ivocal correspondence ( (d. 4.5 ) between E and 
E', such that, when el < e2, in E, then ((e l l <' ((e2 ) in E'. 

We can see that ( projects the order of E into the order of E', and, 
what's more, s ince ( is biun ivocal, there are 'as many' elements in E' 
as in E. We can therefore say that E and E', considered strictly from 
the point of view of their well-orderedness, and abstracted from the 
singularity of their elements, are identical :  the 'morphism' ( form) of 
their well-orderedness is ' iso' ( the same ) ,  as the correspondence ( 
assures us.  

In fact, each class of well-ordered sets isomorphic to each other 
represents a well-orderedness, that well-orderedness common to al l  
sets of that class .  It is this well-orderedness that can be represented 
by an ordinal .  

Thus an ordinal is the mark of a possible figure (a  form, a 
morphism) of well-orderedness, isomorphic to al l  the sets that 
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take that form. An ordinal is the number or the cipher of a 
well-orderedness . 

6.9. This conception, already moving strongly in the direction of 
determining a horizon of being for a l l  number in the form of a uni­
versa l scale of measurement for forms of well-orderedness, neverthe­
less presents some serious difficulties; the first among them technical, 
the remainder philosophical .  

6. 10. The technical difficulties are three in number, three questions 
which must be answered: 

1 Which is the first term in the total series of ordinals, the initial 
l ink that 'anchors' the whole cha in?  This is the conceptual ques­
tion of zero or the empty set, which a lone is able to number 
sequences of no length, sequences with no elements, the well­
orderedness that orders nothing. Th is is the question that caught 
out Frege. 

2 What exactly is the procedure of thought that al lows us to suppose 
a beyond of the sequence of finite whole numbers ? What is the 
gesture by which we pass beyond the finite, and declare co, the 
first ordinal which will not be a natural whole number, the first 
mark of a well-orderedness that describes the structure of a non­
finite set? This is the existential question of the infinite, upon 
which Dedekind foundered. 

3 Does the universal series of ordinals - the scale of measurement 
of al l  length, whether finite or infinite, the total ity of specifications 
of well-orderedness - exist in the set-theoretical framework ? Isn't 
it - l ike the 'system of al l  the possible objects of my thought' 
introduced by Dedekind - an inconsistent totality, one that 
thought cannot take as one of its possible objects ? This i s  the 
question of counting for one an 'absolute' total ity. It is thus 
the problem of the defection of the One as soon as we claim to 
'count' the universe of discourse. 

And so, once again, we find ourselves returned to the three chal­
lenges of the modern thinking of number: zero, the infinite and the 
non-being of the One. 

6. 1 1 .  It rapidly turns out that the third problem admits of no positive 
solution. Something that was at one time put forward as a 'paradox', 
the Bural i-Forti paradox, can actually be proved: the ordinals do not 
form a set, they cannot be collected in a multiple that can be counted 
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for one. The idea of 'a l l '  the ordinals is inconsistent, impossible; it 
is ,  to this extent, the real of the horizon of the being of number. 

This proof is very closely related to that which refutes Dedekind's 
attempt to prove the existence of an infinite set (compare 4.28 ) :  the 
set of 'a l l '  the ordinals must itself be an ordinal, and th us it would 
be inside itself ( s ince it is a set of all the ordinals )  and outside itself 
( s ince it is not counted in the sequence it total ises ) .  We are therefore 
proh ibited to speak of a 'set of ordinals '  with no further qualification . 
Which is prec isely to say: 'being an ordinal '  is a property with no 
extension .  It is possible to confirm that a certa in object is an ordinal 
( possesses the property ) ,  but not to count for one all the objects that 
have this property. 

6. 12 .  I have said enough, in my critique of Frege and Dedekind, for 
the treatment of problems 1 and 2 (6 . 10 )  to be anticipated: the exis­
tence of zero, or the empty set, and the existence of an infinite set 
can in no way be deduced from 'purely logical '  presuppositions. They 
are axiomatic decisions, taken under the constraints of the historial 
inj unction of being. The world of modern thought is nothing other 
than the effect of this inj unction. Beginning in the Renaissance, by 
way of a rupture with the Greek cosmos,2 it became necessary, 
in order to be able to think at a l l  in accordance with our pre­
understand ing of ontological exigency, to assume: 

• th at the proper mode under which every situation 'that is' is 
sutured to its being is not Presence, the deh iscence of that which 
pro-poses itself within its l imits, but pure subtraction, the unquali­
fiable void. In that form of being which is number, this can be 
stated as follows: 'zero exists ' ,  or, in a style more homogenous 
with Cantor's ontological creation: 'a set exists which has no 
elements ' ;  

• that, in their quasi-total ity, and by way of a rupture with the 
mediaeval tradition which reserves this attribute for God alone, 
situation-beings are infin ite; so that, far from being a predicate 
whose force is that of the sacred, the infinite is a banal determina­
tion of being, such as it proffers itself as pure multiplicity under 
the law of a count-for-one. In that form of being which is number, 
this can be stated as follows: 'an infinite set exists'; or, more 
technically: 'an ordinal exists which is not a natural whole 
number' .  Or, in other words, Oro exists ' .  

6. 1 3 .  One had to wait  practically until the beginning of the twentieth 
century before these decisions re lating to zero and to the infin ite 
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would be  recognised in themselves ( under the names of the Axiom 
of the Empty Set and the Axiom of Infinity ) , although they had been 
operative in thought for three hundred years. But this is not surpris­
ing. We can observe a veritable philosophical desperation constantly 
putting these imperatives into reverse, whether through the intellec­
tual derel iction of the theme of finitude or through nostalgia for the 
Greek ground of Presence. It is true that, when we are deal ing with 
pure declarations, decided in themselves, these declarations exh ibit 
the fragil ity of their historicity. No argument can support them. 
What's more, certain truth procedures, in particular pol itics, art and 
love, are not yet capable of sustaining such axioms, and so in many 
ways remain Greek . They cling to Presence (art and love ) ,  continually 
recusing the statement 'zero is the proper numeric name of being' in 
order to give tribute to the obsolete rights of the One.  Or ( politics ) 
they manage finitude, corroding day after day the statement 'the 
situation is infinite' ,  in order to valorise the corrupted authority 
of practicalities. 

6. 14.  The two axioms of the void and of the infinite structure the 
entire thinking of number. The pure void is that which supports there 
being number, and the infinite, that by which it is affirmed that 
number is the measure of the thinking of every situation. The fact 
that this is a matter of axioms and not of theorems means that the 
existence of zero and of the infinite is prescribed to thought by being, 
in order that thought might exist in the ontological epoch of such an 
existence. 

In this sense, the current strength of reactive, archaic and religious 
wills is necessarily accompanied by an irremediable opacity of number 
- which, not ceasing to rule over us, since this is the epochal law of 
being, nevertheless becomes unthinkable for us. Number may exist 
as form of being but, as a result of the total secularisation of the void 
and of the infin ite, thought can no longer exist in  the form and with 
the force that the epoch prescribes to it. So number wil l  now man ifest 
itself, without l imit, as tyranny. 

6. 15 .  The principal phi losophical d ifficulty of the Cantorian concept 
of the ordinals is as follows. In the presentations wh ich bind it to 
the concept of well-orderedness, the theory of ordinals rather 
seems to 'generalise' the intuition of natural whole number that 
allows us to think the being of number. It draws its authority 
from that which it claims to elucidate. The idea of well-orderedness 
in effect does not so much found the concept of number as deduce 
it from the lacunary and finite experience of numerical immediacy, 
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which I incarnated ( in  6 .3 )  in the sympathetic figure of the 
schoolboy. 

I f  we truly wish to establ ish the being of number as the form of 
the pure multiple, to remove it from the schoolroom (which means 
also to subtract the concept from its ambient numericality ) ,  we must 
distance ourselves from operational and serial manipulations. These 
manipulations, so tangible in Peano, project onto the screen of modern 
infinity the quasi-sensible image of our domestic numbers, the 1 ,  fol­
lowed by 2, which precedes 3 ,  and then the rest . The establish ing of 
the correct distance between thought and countable manipulations is 
precisely what I cal l  the ontologisation of the concept of number. 
From the point at wh ich we presently find ourselves, it takes on 
the form of a most precise task: the ontologisation of the 'universal '  
series of the  ordinals .  To proceed, we must abandon the idea of  
well-orderedness and think ordination, ordinal ity, in an  intrinsic 
fashion. 

It is not as a measure of order, nor of disorder, that the concept 
of number presents itself to thought. We demand an immanent deter­
mination of its being. And so for us the question now formulates 
itself as fo llows: which predicate of the pure multiple, that can be 
grasped outside of a l l  seria l engenderment, founds numericality ? We 
do not want to count; we want to think the count. 
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Concepts: Natural Multiplicities 
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Transitive Multiplicities 

7. 1 .  What permits the abandonment of every primitive bond between 
number and order or serial ity is the concept of the transitive set. 
Only this structural - and essential ly ontological - operator enables 
an intrinsic determination of number as a figure of natural being. In 
virtue of it, we are no longer trapped in the quandaries of the deduc­
tion of the concept (Frege) ,  of the subject as causality of lack in serial 
engenderment ( Mil ler) ,  of the existence of the infinite (Dedekind), or 
of the 'schoolboy' intuition of wel l-orderedness (Cantor) .  

7.2. Although this concept might seem a t  first glance rather mysteri­
ous, its lack of relation to any intuitive idea of number is to my eyes 
a great virtue. It proves that in it we grasp something that breaks the 
circle of an ontological elucidation of number entirely transparent in 
its pure and simple presupposition . We have seen that this circle 
recurs in Frege and in Dedekind, and that the Cantorian conception 
of ordinals as types of well-orderedness is sti l l  compl iant with it. But 
we shall see that the legitimacy for philosophical thought of the 
concept of transitivity leaves no room for doubt. 

7.3 .  To understand what a transitive set is, it is  essentia l  to penetrate 
the distinction - of which it would not be an exaggeration to say that 
it supports al l  post-Cantorian mathematics - between an element's 
belonging to a set and the inclusion of a part. This distinction is 
rudimentary, but it implies such profound consequences that for a 
long time it remained obscure. 
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7.4.  A set is 'made out of elements' ,  is the 'col lection' ( in my lan­
guage, the count-for-one) of its elements . 

Take the set E, and let e be one of the elements from which it 
'makes' a set: we denote this by e E E, and we say that e belongs to 
E, E being the s ign for belonging. 

If you now 'gather together" many elements of E, they form a part 
of E. Taking E' as the set of these elements, E' is a part of E. This is 
denoted by E' c E, and we say that E' is included in E, c being the 
sign of inclusion. 

Every element of a part E' of E is an element of E. In  fact this is 
the definition of a part: E' is included in E when al l  the elements that 
belong to E' also belong to E. So we see that inclusion is defined in 
terms of belonging, which is the only 'primitive' s ign of set theory. 

The classic (misleading) image is drawn l ike th is :  

In it we can see that E' is a part of E, that e, is at once (as is every 
element of E' ) an element of E' and an element of E, and that 
e2 is an element of 'the whole' E, but not of the part E'. We also say 
that e2 belongs to the difference of E and E', which is denoted by 
E-E'. 

7.5 .  Is it possible for an element that belongs to set E a lso to be a 
part of that set, also to be included? This seems totally bizarre, above 
al l  if we refer to the image above. But this sentiment misses the most 
important point, which is that an element of a set can obviously be 
itself a set ( and even that this is always the case ) .  Consequently, if e 
belongs to E, and e is a set, the question arises whether an element 
of e is or is not, in its turn, an element of E. If a l l  the elements of e 
are also elements of E, then e, which is an element of E, is also a part 
of E. It belongs to E and is included in E. 

7.6. Suppose for example that V is the set of l iving beings. My cat 
belongs to this set. But a cat is composed of cells, which one might 
say are themselves all l iving beings. So my cat is at once a l iving being 
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and a set of l iving beings. He belongs to V (qua one, this l iv ing cat) ,  
and he is a part of V - he is included in V (qua group of l iving 
cel ls ) .  

7.7. Forget cats . Consider the three fol lowing 'objects ' :  

- the object e] ; 
- the object ez ; 
- the object which is the 'gathering together' of the first two, and 

which we denote by ( e ] ,e2 ) '  This is cal led the pair of e] and ez . 

Form a set from these three objects . In the same way, we denote 
it by: ( e ] ,e2 , ( e ] ,e2 ) ) '  This is cal led the triplet of e] and e2 and the pair 
( e ] ,ez ) .  We wil l  denote it by T. Note that the three elements that 
belong to this triplet are e ] ,  e2 , and ( e ] ,ez ) .  

Since e ]  and ez belong t o  T, if I 'gather them together', I obtain a 
part of T. Thus, the pair (e ] ,ez ) ,  which is the 'gathering together' of 
these two elements of T, is included in T. But in addition we can see 
that it is an element of it, that it also belongs to it. Thus we have 
constructed a very simple case of a set of which an element is also a 
part. In set T, the pair ( e ] ,ez ) is s imultaneously in a position of belong­
ing and of inclusion. 

7.8.  We know, from a famous theorem of Cantor's, that there are 
more parts than elements in any set E whatsoever. This is what I cal l  
the excess of inclusion over belonging, a law of being qua being 
whose consequences for thought are immense, since it affects the 
fundamental categories that inform the couplets One/Multiple and 
WholelPart. It is therefore impossible that every part should be an 
element, that everything that is included should also belong: there are 
always parts that are not elements. 

But we can put the question from the other direction: since we can 
see that it is possible in cenain cases ( for example my cat for the set 
V of living beings, or the pair ( e ] ,ez ) for our triplet T) for an element 
to be a part, is it possible for all elements to be parts, for everything 
that belongs to the set to be included? This is not the case for T: the 
element e ]  taken alone, for example, is not a part of T. 

Can we produce a non-empirical example ( because my V, my cat 
and its cel ls are rationally suspect) of a set al l  of whose elements 
would be parts ? 

7.9. Let's retrace our steps a l ittle, back to the empty set. We have 
proposed ( in 2 . 1 8 )  the axiom 'a set exists which has no elements ' ,  
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that is, a set to which nothing belongs . We are going to give to this 
set, the 'empty' rock of the whole edifice of multiple-being, a proper 
name, the name '0 ' .  

The following, extremely subtle, remark must be  made: the empty 
set is a part of every set; 0 is included in E whatever E might be. Why ? 
Because, if a set F is not a part of E, it is because there are elements 
of F that are not elements of E ( i f  every element of F is an element of 
E, then by definition F is a part of E ) .  Now 0 has no elements . So, it 
is impossible for it not to be a part of E. The empty set is 'universally' 
included, because noth ing in it can prevent or deny such inclusion. 

To put it another way: to demonstrate that F is not a part of E 
requires that we pick out, within F, at least one element: that element 
which, not being an element of E, proves that F cannot be included 
'entirely' within E. Now the void does not tolerate any differentiation 
of this sort. It is in-different, and, because of this, it is included in 
every multipl icity. 

7. 10 .  Consider the two fol lowing 'objects ' :  

- the empty set, 0; 
- the set whose one and only element is the empty set, wh ich is 

cal led the singleton of the empty set, and is denoted by ( 0 ) .  

Note well that this second object is different from the empty set 
itself. In fact, the empty set has no elements, whereas the singleton 
has one element - precisely, the empty set. The singleton of the 
void 'counts for one' the void, whereas the empty set does not count 
anything (this indicates a subtle distinction between 'does not 
count anything', which is what 0 does, and 'counts nothing' , which 
is what (0 )  does. Plato already played on this distinction in the 
Parmenides ) .  

7. 1 1 .  An  additional remark a s  regards singletons (s ingletons 
' in genera l ' ,  not the particular s ingleton of the empty set ) :  Take a set 
E and one of its elements e ( so e E E) .  The singleton of e, written (e ) ,  
is a part of E: (e )  c E. 

What is the singleton of e, in fact ? It is the set whose un ique 
element is e. Consequently, if e is an element of E, 'al l '  the elements 
of the singleton (e) - namely the single element e - are elements of 
E, and so (e) is included in E. 

7. 12 .  'Gather together' our two ohjects, the empty set denoted by 0 
and the singleton of the empty set, denoted by ( 0 ) .  We obtain the 
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pair (0 ,  (0 ) ) ,  which we wil l  denote by D.  This time, the two elements 
of the pair D are also parts; everyth ing that belongs to D is also 
included in D .  In fact, the first element, 0, the empty set, is included 
in any set whatsoever ( see 7.9 ) .  Specifically, it is a part of the pair 
D. But, what's more, s ince 0 is an element of D, its s ingleton (0) , is 
a part of D ( 7. 1 1 ) . But (0) i s  precisely the second element of D.  Thus 
this element is also included in D .  The set D is such that every element 
of it is a lso a part; everyth ing that belongs to D is included in D. 

7. 13 .  As predicted by Cantor's theorem, there are parts of D that are 
not elements of D. For example, the singleton of the element ( 0 )  of 
D is a part of D, as is every singleton of an element ( 7. 1 1 ) . We can 
write this 'singleton of the s ingleton' as ( ( 0 ) ) .  Now, this object is not 
one of the two elements of D. 

7. 14.  An important definition : we say that a set T is transitive i f  it 
is l ike the set D that we have just bui lt: if  all of its elements are also 
parts, if everything that belongs to it is also included in it, if, wherever 
it is the case that t E T, it is also the case that t c T. 

7. 15 .  Transitive sets exist, without a doubt. Perhaps V, the set of 
l iving beings; certainly the set (0 , (0 ) ) ,  which is transparent, translu­
cent even, constructed as it is from the void (the pair of the void and 
the singleton of the void, the void as such and the void as one ) .  

7. 16.  Modernity is defined by the fact that the One is not (Nietzsche 
said that 'God is dead', but for h im the One of Life took the place 
of the deceased) .  So, for we moderns ( or 'free spirits ' ) ,  the Multiple­
without-One is the last word on being qua being. Now the thought 
of the pure multiple, of the multiple considered in  itself, without 
consideration of what it is the multiple of (so: without consideration 
of any object whatsoever) ,  is called: 'mathematical set theory' . There­
fore every major concept of th is theory can be understood as a 
concept of modern ontology . 

What does ontology discover in the concept of the transitive 
set? 

7. 1 7. Belonging is an ontological function of presentation, indicating 
that which is presented in the count-for-one of a multiple. Inclusion 
is the ontological function of representation, indicating multiples re­
counted as parts in the framework of a representation. A most impor­
tant problem (the problem of the state of a situation) is determined 
by the relation between presentation and representation. 
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Now, a transitive set represents the maximum possible equil ibrium 
between belonging and inclusion, the element and the part, E and c. 
Transitivity thus expresses the superior type of ontological stability; 
the strongest correlation between presentation and representation. 

There is always an excess of parts over elements (Cantor's theorem) , 
there always exist parts of a set which are not elements of that set. 
Thus we obtain the maximal correspondence between belonging and 
inclusion precisely when every element is a part: when the set con­
sidered is transitive. 

This strong internal frame of the transitive set (the fact that every­
thing that it presents in the multiple that it is, it represents a second 
time in the form of inclusion ) ,  th is equil ibrium, this maximal stabil ity, 
has led me to say that transitive sets are 'normal ' ,  taking 'normal'  in 
the double sense of non-pathological ,  stable, strongly equilibriated, 
that is to say: not exposed to the disequi l ibrium between presentation 
and representation, a disequi l ibrium whose effective form is the 
evental caesura; and submitted to a norm, that of a maximally 
extended correspondence between the two major categories of 
ontological immanence: belonging and inclusion. 

7. 1 8 .  The concept of transitive multiplic ity wil l  constitute the normal 
basis for the thinking of number. Transitiv ity is at once that which 
makes of number a section2 taken from the equil ibrated fabric of 
being and that which provides the norm for this section. 



8 

Von Neu mann Ordinals 

8. 1 .  Let's consider more closely set D, introduced in 7. 12 ,  written as 
(0, (0 ) ) ,  which is the pair of the void and the singleton of the void. 

We know that set D is transitive: its two elements, 0 and ( 0 ) ,  
are also parts of D.  We can  make a further remark here :  these two 
elements are also transitive sets .  

• That (0 )  is transitive is self-evident: the only element of the single­
ton (0) i s  O .  Now, 0 is a 'universal '  part included in every set, 
and, in particular, it is  included in the set ( 0 ) .  So the unique 
element of (0 )  is also a part of (0 ) ,  and consequently ( 0 )  is a 
transitive set. 

• That 0, the empty set, is transitive results from its negative 'poros­
ity' to every property, which a lready makes it a part of any set 
whatsoever (compare 7.9 ) :  a transitive set is one al l  of whose ele­
ments are also parts. Thus a set that is not transitive has at least 
one element that is not a part. Now 0 has no elements. So it 
cannot not be transitive. And, so, it is .  

With our set D we have constructed not only a transitive set, but 
a transitive set of transitive sets : this transitive set 'gathers together' 
transitive sets . Both 0, (0) and their pair (0 , ( 0 ) ) ,  are transitive. 

8.2. A truly fundamental definition: A set is an ordinal (in von 
Neumann 's sense) ' i f  it is l ike D, that is, if  it is transitive and al l  of 
its elements are transitive. 
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8 .3 .  This definition completes the technical part of the ontologisation 
of the concept of the ordinal .  We are no longer dealing with well­
orderedness, with the image of the sequence of natural whole numbers, 
or with an operational status. Our concept is purely immanent. It 
describes a certa in internal structural form of the ordinal, a form that 
connects together in a s ingular fashion the two crucial ontological 
operators belonging and inclusion, E and Co 

Set D, wh ich we have used as an exemplary case, is therefore an 
ordinal .  We can l i ft a corner of the veil on its identity : it is the number 
Two. Moreover, this Two al lows us to affirm that von Neumann 
ordinals exist. 

8.4. Before deploying this new concept of the ordinal ,  let's begin with 
a first examination of the status of its definition and of the reasons 
why the ordinals constitute the absolute ontological horizon of all 
numbers. 

8 .5 .  I have indicated ( 7. 16 )  that a transitive set is the ontological 
schema of the 'normal' multiple. Taking into account the fact that 
the excess of representation over presentation is irremediable, tran­
sitivity represents the maximal equi l ibrium between the two. 

Now, not only is an ordinal transitive, but all of its elements are 
also transitive. An ordinal disseminates to the interior of a multiple 
that normality which characterises it. It is  a normality of normalities, 
an equil ibrium of equi l ibria. 

A truly remarkable property results from this, which is that every 
element of an ordinal is an ordinal. 

Take an ordinaF W, and an element of that ordinal x (so that 
x E W).  W being an ordinal ,  al l  of its elements are transitive, so x is 
transitive. For the same reason (the ordinal ity of W) W is itself transi­
tive, so x, an element of W, is also a part of W: x c W. As a result, 
all the elements of x are elements of W. And, j ust as all the elements 
of W are transitive, the same follows for all the elements of x. The 
set x is thus a transitive set a l l  of whose elements are transitive: it is 
an ordinal .  

8.6. I f  transitivity is a property of stabil ity, th is t ime we discover a 
complementary property of homogeneity: that which makes up the 
internal multiple of an ordinal ,  the elements belonging to it, are all 
ordinals .  An ordinal is the count-for-one of a multipl icity of 
ordinals .  

Because of this homogenous and stable 'fabric' of ordinal multi­
pl icity, I have been led to say that ordinals are the ontological schema 
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of the natural multiple. I call 'natura l '  ( by way of opposition to 
multiplicities that are unstable, heterogeneous, historical, and which 
are thus exposed to the evental caesura) precisely that which is exem­
plified by the underlying multiple-being as thought by mathematics: 
a maximal consistency, an immanent stabil ity without lacuna, and a 
perfect homogeneity, in so far as that of which this multiple-being is 
composed is of the same type as itself. 

We therefore posit, once and for al l ,  that an ordinal is the index 
of the being of a natural multiplicity. 

8 .7. If it is  true that the ordinals constitute the great ontological 
'ground' of number, then we can also say that number is a figure of 
natural being, or that number proceeds from Nature. With the caveat, 
however, that 'Nature' refers here to noth ing sensible, to no experi­
ence: 'Nature' is an ontological category, a category of the thought 
of the pure multiple, or set theory . 

8 .8 .  Must we say simultaneously that ordinals 'are numbers ' ?  Such 
would indeed be the idea of Cantor, who thought to achieve by way 
of the ordinals an infinite prolongation of the sequence of whole 
numbers. But for us, who have yet to propose any concept of number, 
th is would be begging the question. We will see, after having defined 
what I call Number (the capital isation is not for the sake of majesty, 
but to designate a concept that subsumes all species of number, 
known or unknown) ,  that the ordinals, though playing a decis ive role 
in th is definition, are only the representable amongst numbers, in the 
numerical swarming which being lavishes on the ground of Nature. 
The ordinals wil l  thus be at once the instrument of our access to 
number, of our th inking of number, and, albeit lost in a profusion 
of Numbers that exceeds them in every way, they will be represent­
able or figurable as themselves, too, being Numbers . 

8.9. The empty set, 0, is an ordinal .  We have seen above that it is 
transitive ( 8 . 1 ) .  It fol lows that a l l  its elements are also transitive: 
having no elements, how could it have an element that was not transi­
tive ? Contrary to al l  intuition, zero, or the void, is a natural ontologi­
cal donation. The void, which sutures all language and all thought 
to being, is also the point of nature where number is anchored. 

8 . 10. Von Neumann ordinals have two crucial properties : 

1 They are total ly ordered by the fundamental ontological relation 
belonging, the sign of multiple-presentation. That is to say that, 
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given two ordinals WI and W2, either the former belongs to the 
latter (WI E W2) ,  or the other way around (W2 E Wd, or they 
are identical (WI = W2) .  

2 They obey a principle of minimality: given any property P what­
soever, if an ordinal possesses this property, then there exists a 
smallest ordinal to possess it. Order is always belonging: if you 
have an ordinal W such that it possesses the property P (if the 
statement P(W) is true ) ,  then there exists an ordinal WI which 
has the property and which is the smallest to have it (if W2 E W b 

W2 doesn 't have the property ) .  

These two properties are natura l .  The first expresses the un iversal 
intrication of those stable and homogenous multipl icities that are 
natural multipl ic ities ( see 8 .6 ) :  thought in their being, two natural 
multiples - two ordinals, then - cannot be independent. Either one 
is in the presentation of the other, or vice versa. Nature does not 
tolerate indifference or d isconnection. The second property expresses 
the 'atomic' or, if you like, 'quantum' character of nature. If a prop­
erty applies to some natural multiple, then there is always a natural 
multiple that is the minimal support of that property. 

Taken together, these two properties reunite the global status 
of nature with its local status .  Even though Nature3 does not exist 
(there is no set of all the ordinals, see 6 . 1 1 ) , there is a sort of unity 
of plan, of global interdependence, between natura l multiples: 
the presentation of which they are the schema is always 'embedded' .  
And, although there are no un ique and indiscern ible components 
of nature like the Ancients ' atoms ( unless one considers the void 
as such ) ,  there is an exceptional local point for every property 
that obtains for the 'regions' of nature: the minimal support of this 
property. 

This articulation of the global and the local lends its ontological 
framework to every Physics. 

8 . 1 1 .  The two crucial properties (total order and minimal ity) can 
both be proved on the basis of von Neumann's  definition of the 
ordinals .  

These proofs depend upon a key principle of set theory (ontology 
of the multiple ) :  the Axiom of Foundation.4 This axiom says that 
every situation (every pure multiple) comprises at least one term (one 
element) that has 'nothing in common' with the situation, in the 
sense that nothing of that which composes the term (no element of 
the element) is presented in the s ituation ( belongs to the original 
multiple ) .  
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8 . 12. Let's return to the example of my cat  ( 7.6 ) .  It is  an element of 
the set of l iving beings, and it is composed of cel ls that are in turn 
elements of this set, if one grants that they are l iving organisms. But 
if we decompose a cell into molecules, then into atoms, we eventual ly 
reach purely physical elements that don't belong to the set of l iving 
beings. There is a certain term (perhaps the cel l ,  in fact) wh ich 
belongs to the set of l iving beings, but none of whose elements 
belongs to the set of l iving beings, because those elements all involve 
only ' inert' physico-chemical materia l ity. Of this term, which belongs 
to the set but none of whose elements belongs to it, we can say 
that it grounds the set, or that it is a fundamental term of the set. 
'Fundamental '  meaning that on one side of the term, we break through 
that which it constitutes; we leave the original set, we exceed its 
presentative capacity . 

8. 13 .  Once more, let's leave l iving beings, cats, cells and atoms 
behind. Consider the singleton of the singleton of the void, that is ,  
the set whose unique element is the singleton of the void, and which 
is written as ( ( 0 ) ) .  The element (0) of this set has as its only element 
the void, O. Now the void is not an element of the original set ( ( 0 ) ) ,  
whose only element is (0 ) ,  because the void 0 and the singleton 
of the void (0 )  are different sets . So ( 0 )  represents, in ( ( 0 ) ) ,  a local 
foundation-point: it has no element in common with the original set 
( ( 0 ) ) .  That which it presents qua multiple - that is, 0 - is not presented 
by ( ( 0 ) ) ,  in the presentation in which it figures. 

The Axiom of Foundation tel ls us that this situation is a law of 
being: every multiple is founded, every multiple comprises at least 
one element which presents nothing that the multiple itself 
presents . 

8 .14 .  The Axiom of Foundation has a remarkable consequence, 
which is that no set can belong to itself, that no multiple figures in 
its own presentation, that no multiple counts itself as one. In this 
sense, being knows nothing of reflection. 

Take a set E which is an element of itself: E E E. Consider the 
s ingleton of this set, (E ) .  The only element of this s ingleton is E. So 
E must found (E ) .  But this is impossible, s ince E belongs to E, and 
thus has in common with (E) that element which is itself. Since the 
axiom of foundation is a law of being, we must reject the original 
hypothesis : there does not exist any set that is an element of itsel f. 

8 . 15 .  Returning to the crucial properties of the ordinals :  They can 
be proved, once the axiom of foundation is assumed. I will do so 



72 CONCEPTS: NATURAL MULTIPLICITIES 

here for the principle of minimality. For the principle of total order 
through belonging, see the note.5 

Take an ordinal W I  wh ich possesses property P. If it is min imal, 
a l l  is wel l .  Suppose that it is not. In that case, there exist ordinals 
smaller than WI ( and which therefore belong to W I ,  since the order 
in question is belonging) and which also possess the property. Con­
sider the set E of these ordinals ( 'gathering together' all those which 
possess property P and belong to Wd .  Set E obeys the Axiom of 
Foundation. So there is an element Wz of E which is an ordinal (s ince 
E is a set of ordinals)  that possesses property P ( s ince al l  the elements 
of E possess it) and that has no element in common with E. 

But, s ince W I is an ordinal, it is transitive. So W 2 , which belongs 
to it, is also a part of it: the elements of W2 are all elements of WI . 
If an element of W2 possesses property P, then, s ince it is an element 
of WI ! it must belong to E ( s ince E is the set of all the elements of 
WI possessing property Pl .  Which cannot be, because W2 founds E 
and therefore has no element in  common with E. Consequently, 
no element of W2 has the property P, and Wz is minimal for this 
property. QED.  

8 . 16 .  Thus is knitted the ontological fabric from which the numbers 
wil l  be cut out.6 Homogenous, intricate, rooted in the void, loca lly 
minimisable for every property, it is very much what we could call a 
horizonal structure. 
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Succession and Li m it. 
The Infinite 

$4 

9. 1 .  In chapter 6,  when we spoke of Dedekind's and Cantor's 
approaches to the notion of the ordinal (on the basis of well-ordered­
ness ) ,  we saw that the whole problem was that after one ordinal 
comes another, well-determined, and that this series can be pursued 
indefinitely. We also saw that it was not at all the same thing to 'pass' 
from n to n + 1 ( its successor) as to pass from 'all '  the natural 
numbers to their beyond, which is the infinite ordinal (0. In the latter 
case, there is manifestly a shift, the punctuation of a 'passage to the 
limit' . 

In the ontologised concept of the ordinals which von Neumann 
proposed and to which we dedicated chapter 8, do we once more 
find this dialectic between simple succession and the ' leap' to the 
infin ite ? And, more genera lly, how does the thorny issue of the exis­
tence of an infinite multiple present itsel f  in this new context ? 

9.2. Let's apply ourselves firstly to the concept of succession. 
We must take care here. The image of succession, of 'passage' to 

the next, is so vividly present in the immediate representation of 
number that it is often thought to be constitutive of its essence. I 
reproached J. A. Mil ler ( see 3 . 17 )  prec isely for reducing the problem 
of number to the determination of that which insists in its succes­
sional engenderment. I held that the law of the serial  passage across 
the numeric domain, a law which is imposed on us, does not coincide 
with the ontological immanence of number as singular form of the 
multiple. 
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Consequently, if we find the idea of succession once again in von 
Neumann's conception of the ordinals, it too must yield to the process 
of ontologisation. Our goal wil l  be to d iscover, not so much a prin­
ciple of passage as an intrinsic qual ification of that which succeeds, 
as opposed to that which does not. What counts for us is not succes­
sion, but the being of the successor. The repetitive monotony of 
Peano's +1 does not concern us any longer: what we want to think 
is the proper being of that which can only be attained in the modal ity 
of the additional step. 

9.3. Let's consider an ordinal W, in von Neumann's sense (a  transi­
tive set a l l  of whose elements are transitive ) .  

A set, then, whose elements are: 

- al l  of the elements of W; 
- W itself. 

So, to everyth ing that composes the multiple W, we 'add' one 
supplementary e lement, namely W itsel f. And it is indeed a question 
of the adjunction of a new element, since we know ( it is a conse­
quence of the axiom of foundation, compare 8 . 14 )  that W is never 
an element of itsel f. 

A non-operational form of +1 can be seen emerging here: it is not 
a matter of an extrinsic addition, of an external 'plus' ,  but of a sort 
of immanent torsion, which 'completes' the interior multiple of W 
with the count-for-one of that multiple, a count whose name is pre­
cisely W. The +1 consists here in extending the rule of the assembly 
of sets to what had heretofore been the principle of this assembly, 
that is, the unification of the set W, which is thereafter aligned with 
its own elements, counting along with them. 

9.4. An example of the procedure. We have demonstrated that set 
D, which is written (0 , ( 0 ) ) ,  and which is the pair of the void and the 
singleton of the void, is an ordinal ( it is transitive and al l  its elements 
are transitive ) .  Our non-operational definition of +1 consists in 
forming the set of the three fol lowing elements: the two elements of 
D and D itself. We write this as (0 , (0 ) , (0, ( 0 ) ) )  (the 'whole' D is found 
in the third pos ition ) .  Call this triplet T. We can now demonstrate 
that: 

• T is transitive. Its first element, 0, is a universal part, and so it 
must be a part of T; its second element, (0 ) ,  is the singleton of its 
first element, o. So it is also a part of T ( see 7. 1 1 ) .  Its third element 
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( 0, (0 ) )  is nothing but the 'gathering together', the forming into a 
pair, of these first two. So it is also a part. So every element of T 
is a part, and T is transitive. 

• All the elements of T are transitive. Given that we have shown 
that D is an ordinal ,  we have duly shown that its elements, 0 and 
(0 ) ,  are also transitive. We have equal ly demonstrated that it itsel f, 
(0 , (0 ) ) ,  is transitive. And these are precisely the three elements 
of T. 

So T, obtained by 'adjoin ing' D to the elements of D,  is a von 
Neumann ordinal :  a transitive set al l  of whose elements are 
transitive. 

9.5.  The reason ing we j ust fol lowed can easily be general ised. For 
any ordinal W whatsoever, everyth ing wil l  fol low just as for T: the 
set obtained in adjoin ing W itself, as an element, to W's elements is 
an ordinal .  

We 'step' from W to a new ordinal by adjoining to W's elements 
a single additional element (this, now, al lows us to l ift a corner of 
the vei l  on the identity of our example T: j ust as D was two - I would 
like to say the being of number Two - T is none other than the 
number Three) .  

The fact that one steps from W to  a new ordinal, whose 
elements are those of W supplemented by the one-name of their 
assembly, by way of a sort of immanent +1 , justifies the fol lowing 
definition : we will call the ordinal obtained by joining W to the 
elements of W, the successor of the ordinal W, and will denote it 
by S(W). 

So, in our example, T (three ) is the successor of D (two) .  

9.6. The idea of the 'passage' from two to  three, o r  from W to  S(W),  
i s ,  in truth, purely metaphorical .  In fact, from the start there are 
figures of a multiple-being, D and T, and what we have defined is a 
relation whose sole purpose is to faci l itate for us the intel l igible 
passage through their existences. Fin itude demands the binding of the 
un-binding of being. We therefore think, in the succession T = S (D) ,  
a relation whose basis i s ,  in truth, immanent: T has the structural 
property, verifiable in its ontological composition, of being the suc­
cessor of D,  and it is no more than a necessary i l lusion to represent 
T as being constructed or defined by the relation S, which connects 
it externally to D .  

A more rigorous phi losophical approach consists in examining the 
ordinals in themselves and in asking ourselves whether they possess 
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the property of succeeding. For example, T possesses the property of 
succeeding D, recognisable in itself from the fact that D is an element 
of T, and, what's more - as we shal l  see - that D is an element that 
can be immanently distinguished ( it is 'maximal '  in T) .  

We wil l  cal l  successor ordinal an ordinal that possesses the prop­
erty of succeeding. 

So T is a successor ordinal .  

9 .7. It might be objected that the property 'succeeds W' is sti l l latent 
in the intrinsic concept of successor, and therefore that we have failed 
to establish ourselves in the ontological unbinding. This objection 
can be al leviated. 

Let's consider an ordinal W having the fol lowing, purely imma­
nent, property : amongst the elements of W, there is one element, say 
w I . of which all the other elements of W are elements : if Wz is an 
element of W different from w I ,  then Wz E W I .  I say that W is neces­
sarily a successor ordinal ( in fact, it succeeds wd .  

For i f  this situation obtains, i t  is because W' s  elements are: 

- on the one hand the element W I ;  

- on the other, elements which, l ike wz, are elements of W I .  

But, i n  real ity, all the elements o f  W I  are elements o f  W .  For we 
know that belonging, E ,  is a tota l order over the ordinals ( see 8 . 10 ) .  
Now, al l  the elements of an ordinal are ordinals ( 8 . 5 ) ;  specifically, 
al l  the elements of W are ordinals .  W I  is therefore an ordinal, and it 
fol lows that the elements of W I  are al l  ordinals . These elements are 
connected to ordinal W I  and W by the relation of total order that is 
belonging: if W E  W I ,  since W I  E W, then w E W (transitivity of the 
order-relation ) .  

Thus W is composed of a l l  the elements of W I ,  and  W I  itself: W is 
by definition the successor of W I .  

Let's agree to cal l  the maximal element o f  a n  ordinal the 
element of that ordinal which is l ike WI for W: all the other 
elements of the ordinal belong to the maximal element. The 
reasoning above now permits us to make the fol lowing definition: 
An ordi1zal will be called a successor if it possesses a maximal 
element. 

Here we are in possession of a totally intrinsic definition of the 
successor ordinal .  The singular existence of an ' internal '  maximum, 
located solely through the examination of the multiple structure of 
the ordinal ,  of the fabric of elementary belonging at its heart, allows 
us to decide whether it is a successor or not. 
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9.S. Since we now have an immanent, non-relational and non-serial 
concept of 'what a successor is ' ,  we can pose the question: Are there 
ordinals that are not successors ? 

9.9. The empty set, 0, is an ordinal that is not a successor. It obvi­
ously cannot succeed anything, since it has no elements and, to 
succeed, it must have at least one element, namely the ordinal that it 
succeeds. 

Or, staying closer to the immanent characterisation:  to be a suc­
cessor, ° must have a maximal element. Having no elements, it 
cannot be a successor. 

Once again, we discover the void's function as ontological anchor: 
purely decided in its being, it is not inferable and, in particular, it 
cannot succeed: the void is itself on the edge of the void, there is no 
way it could follow from being, of which it is the original point. 

9. 10.  All the ordinals that we have used in our examples, apart from 
the void, are successors. Thus ( 0 )  (which is the number 1 )  is the suc­
cessor of 0. The number 2,  whose being is ( 0 , (0 ) ) ,  and which is 
composed of the void and 1 ,  is the successor of 1 .  And our T (the 
number 3 ) ,  which is composed of the void, 1, and 2 and is written 
(0 , (0 ) , (0, (0 ) ) ) ,  is the successor of 2. It is clear that we can continue, 
and wil l  thereby obtain 4, 5, and, finally, any of the natural whole 
numbers, all of which are successor ordinals . 

9. 1 1 .  Does this mean that we have at our disposal a thinking of 
natural whole number? Not yet. We can say that 1, then 2, then 3 ,  
etc . ,  i f  we think each i n  its multiple-being, are natural whole numbers . 
But, without being able to determine the place of their deployment, 
it is impossible for us to pass beyond this case-by-case designation 
and to propose a genera l concept of whole number. As Dedekind 
perceived, such a concept necessitates a detour through the infinite, 
since it is within the infinite that the finite insists. The only thing that 
we can say with certainty is that whole numbers are successor ordi­
nals. But this is certainly not a sufficient characterisation of them: 
there might well be other successors that are not whole numbers, 
perhaps successors that are not even finite sets. 

9. 12 .  The question becomes : are there any other non-successor 
ordinals apart from the void? 

Let's call these non-successor ordinals different from ° (without 
yet knowing whether they exist) limit ordinals . We ask once more :  
do  limit ordinals exist? 
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We are not yet in a position to decide upon this question. But we 
can prove that, if they do, they are structurally very different from 
successor ordinals .  

9. 1 3 .  No ordinal can come in between an ordinal W and its successor 
S (W) .  By this we mean that, given that the order-relation between 
ordinals is that of belonging, no ordinal W I exists such that we have 
the sequence W E WI E S (W) .  

We know in fact that W is the maximal element of S (W) ( see 9 .7 ) .  
Consequently, every element of S (W) that  is different from W belongs 
to W. Now, our supposed WI belongs to S (W) .  Therefore one of two 
things must apply: 

• either WI  is identical to W. But this is impossible, because we 
have supposed that W E W I .  which would give us W E W. But 
we know ( 8 . 14 )  that no set can be an element of itself; 

• or WI is an element of W. But then it would not be possible that 
W E  W I .  since WI E W. 

It can be seen that ordinal succession is the schema of the 'one 
more step', understood as that which hol lows out a void between the 
initial state and the final state. Between the ordinal W and its succes­
sor S(W),  there is nothing. Meaning: nothing natural, no ordinal .  We 
could also say that a successor ordinal del imits, j ust 'behind' itself, a 
gap where nothing can be established. In this sense, rather than suc­
ceeding, a successor ordinal begins: it has no attachment, no continu­
ity, with that which precedes it. The successor ordinal opens up for 
thought a beginning in being. 

9. 14 .  A l imit ordinal, if such a thing exists, is a different case alto­
gether. The defin ition of such an ordinal is, please note, purely nega­
tive: it is not a successor; that is all that we know of it for the moment. 
We can a lso say: it does not possess a maximal element. But the 
consequences of this lack are considerable. 

Take L, a supposed l imit ordinal ,  and W I ,  an element of this 
ordinal .  Since WI is not maximal, there certainly exists an element Wl 
of L which is larger than it: so we have the chain: W I  E Wz E L. But, 
since in its turn Wz is not maximal, there exists a W3 such that 
WI E Wz E W3 E L. And so on. 

Thus, when an ordinal belongs to a l imit ordinal, a third party is 
intercalated into the relation of belonging, and, as this process has 
no stopping point, as there is no maximal element, it can be said that, 
between any element W of a limit ordinal L and L itsel f, there is 
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always an ' infinity ' ,  in the intuitive sense, of intermediate ordinals .  
So it is in a strong sense that the l imit ordinal does not succeed.  No 
ordinal is the last to belong to it, the 'closest' to it. A l imit ordinal is 
always equally 'far' from al l  the ordinals that belong to it. Between 
the element w of L and L, there is an infinite distance where inter­
mediaries swarm. 

The result is that, contrary to what is the case for a successor ordinal, 
a limit ordinal does not hollow out any empty space behind itself. No 
matter how 'close' to L you imagine an element w to be, the space 
between w and L is infinitely populated with ordinals. The limit ordinal 
L is therefore in a relation of adherence to that which precedes it; an 
infinity of ordinals 'cements' it in place, stops up every possible gap. 

If the successor ordinal is the ontological and natural schema of 
radical beginning, the l imit ordinal is that of the insensible result, of 
transformation without gaps, of infinite continuity. Which is to say 
that every action, every will, is placed either under the sign of the 
successor, or under the sign of the limit. Nature here furnishes us 
with the ontological substructure of the old problem of revolution 
( tabula rasa, empty space) and of reform ( insensible, consensual and 
painless gradations ) .  

9. 15 .  There i s  another way t o  indicate the difference between 
successors and l imits (which are for us the predicates of natural 
multiple-being) .  

The union of a set E is the set constituted by the elements of the 
elements of E. This is related to a very important operator of the 
ontology of the multiple, the operator of dissemination. The union 
of E 'breaks open' the elements of E and collects a l l  the products of 
this breaking-open, al l  the elements contained in the e lements whose 
counting-for-one E assures. 

An example: take our canonical example of three, the set T that 
makes a triplet of the void, the s ingleton of the void and the pair of 
the void and its singleton . It is written ( 0 , (0 ) , (0, (0 ) ) ) .  What is the 
union of T? 

The first element of T is 0, which has no elements. It therefore 
donates no elements to the union. The second element is (0 ) ,  whose 
single element is O. This latter element will feature in the union. 
Final ly the third element is (0 , (0 ) ) ,  whose two elements are 0 (wh ich 
we already have) and ( 0 ) .  So in the end the union of T, the set of the 
elements of its elements, is composed of 0 and ( 0 ) :  it is the pair (0 , ( 0 ) ) .  
That is to  say, our D, or the number two. The dissemination of three 
is no other than two. We state in passing (this wi l l  be clarified in 
9. 1 8 ) that the union of T is 'smaller' than T itself. 
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9. 1 6. The position of ordinals with regard to union is most peculiar. 
Given that an ordinal W is transitive, all its e lements are also parts. 
And this means that the elements of the elements of W, which are 
also the elements of the parts of W, are themselves elements of W. 
In the union of an ordinal we find nothing but the elements of that 
ordinal .  That is to say that the union of an ordinal is a part of the 
ordinal. If we denote the set 'union of E' by uE, then, for every 
ordinal ,  uW c W. 

This property is characteristical ly natural: the internal homogene­
ity of an ordinal is such that dissemination, breaking open that which 
it composes, never produces anything other than a part of itself. Dis­
semination, when it is appl ied to a natural multiple, delivers only a 
'shard' of that multiple. Nature, stable and homogenous, can never 
'escape' its proper constituents through dissemination . Or: in nature 
there is no non-natural ground. 

9. 1 7. That the union of an ordinal should be a part of that ordinal, 
or that the elements of its elements should be elements, brings us to 
the question: are they all? Do we ultimately find not even a 'partial '  
part (or proper part, compare 4 . 12 ) ,  but only the ordinal we began 
with ? It could well be that every element can be found as element of 
an element, s ince the internal fabric of an ordinal is entirely intri­
cated . In that case, uW = W. Not on ly would dissemination return 
only natural materials, but it would restore the initial totality. The 
dissemination of a natural set would be a tautological operation. 
Which is to say that it would be absolutely in va in:  we could then 
conclude that nature does not allow itself to be disseminated. 

9. 18 .  This seductive thesis is verified in the case of limit ordinals, if 
such a case exists. 

Take any element W I  whatsoever of a l imit ordinal L. We have 
shown (in 9. 14 )  that between W I  and L necessarily comes an inter­
calated element W2, in such a fashion that we always have (whatever 
the element wd the chain WI E W2 E L. But, in addition, when we 
disseminate L the element WI will be found again in the union, as an 
element of W2 . Consequently, every element of L features in uL, the 
union of L. And, as we have seen, conversely (9. 1 5 ) ,  that every 
element of uL is an element of L (s ince uL c L) ,  it only remains to 
conclude that the elements of L and those of uL are exactly the same. 
Which is to say that L is identical to uL. 

To dissemination, the l imit ordinal opposes its infinite seIf­
coalescence. It is exemplarily natural, in so far as, in being 'dissected', 
its elements do not alter. It is its own dissemination . 
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9. 19. A successor ordinal ,  on  the other hand, resists being identified 
with its dissemination . It remains in excess of its union. 

Let's consider a successor ordinal W. By definition it has a maximal 
element W I '  Now it is impossible that this element should be found 
in the union of W. If it were found, that would mean that it was the 
element of another element, Wz , of W: so W I  E Wz, and W I  would not 
be maximal .  The maximal element W I  necessarily makes the differ­
ence between W and uW. There is at least one element of a successor 
ordinal that blocks the pure and simple disseminative restoration of 
its multiple-being. A successor, unl ike a l imit, is 'contracted' ,  a ltered, 
by dissemination . 

9.20. In my view, this contrast is of the greatest phi losophical impor­
tance. The prevai l ing idea is that what happens 'at the l imit' is  more 
complex, and also more obscure, than that which is in play in a suc­
cession, or in a simple 'one more step' .  For a long time phi losoph ical 
speculation has fostered a sacral isation of the l imit .  What I have 
called elsewhere I the 'suture' of phi losophy to the poem rests largely 
upon this sacral isation . The Heideggerian theme of the Open, of the 
deposition of a closure, is the modern form of the assumption of 
the l imit as a wrenching away from counting, from technique, from 
the success ion of discoveries, from the serial ity of Reason . There is 
an aura of the l imit, and an unbeing of succession. The 'heart come 
from another age' aspires ( and this horizon-effect is only captured, 
so it seems, by the poem) to a movement across those ' infinite 
meadows where al l  time stands sti l l ' . z 

What the ontology of the multiple ( based in a contemporary 
Platon ism) teaches us is, on the contrary, that the difficulty resides 
in succession, and that there, also, resides resistance. Every true 
test for thought originates in the localisable necessity of an addi­
tional step, of an unbroachable beginning, which is neither fused 
through the infinite replenishment of that which precedes it, nor 
identical to its dissemination. To understand and endure the test 
of the additional step, such is the true necessity of time. The l imit 
is a recapitulation of that which composes it, its 'profundity' is 
fal lacious; it is in virtue of its having no gaps that the l imit ordinal, 
or any multiplicity 'at the l imits' ,  attracts the evocative and hollow 
power of such a 'profundity' . The empty space of the successor 
is more redoubtable, it is  truly profound. There is nothing more to 
think in the l imit than in that which precedes it. But in the successor 
there is a crossing. The audacity of thought is not to repeat 'to the 
limit' that which is already entirely retained within the s ituation 
which the limit limits; the audacity of thought consists in crossing a 
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space where nothing is given . We must learn once more how to 
succeed. 

9.2 1 .  Basical ly what is difficult in the limit is not what it gives us to 
think, but its existence. And what is difficult in succession is not its 
existence (as soon as the void is guaranteed, it follows ineluctably ) 
but that which begins in thought with this existence. 

And so, speaking of the l imit ordinal, the question returns, ever 
more insistent: do l imit ordinals exist ? On condition of the existence 
of the void, there is 1 ,  and 2, and 3 . . .  , a l l  successors . But a limit 
ordina l ?  

The  reader wi l l  have real ised: we find ourselves on  the  verge of the 
decision on the infinite. No hope of proving the existence of a single 
l imit ordinal .  We must make the great modern declaration: the infi­
nite exists, and, what is more, it exists in a wholly banal sense, being 
neither revealed ( religion ) ,  nor proved (mediaeval metaphysics) ,  but 
being simply decided, under the injunction of being, in the form of 
number. All our preparations amount only to saying, to being able 
to say, that the infinite can be thought in the form of number. We 
know it, at least for that which fal ls within the natural ontological 
horizon of number: the ordinals . That is infinite which, not being 
void, meanwhile does not succeed. It is time to announce the 
fol lowing: 

Axiom of Infinity .  A l imit ordinal exists. 



1 0  

Recurrence, or Induction 

10. 1 .  A momentary pause to begin with : let's recapitu late what the 
ordinals give us to think as regards being qua being, from the view­
point of a phi losophy informed by mathematical ontology. 

10.2. The ordinals are, because of the internal stabi l ity of their 
multiple-being (the maximal identity between belonging and inclu­
sion, between 'first' presentation through the multiple, as element, 
and re-presentation through inclusion, as part) and the tota l homo­
geneity of their internal composition (every element of an ordinal is 
an ordinal ) ,  the ontological schema of natural multiplicity. 

1 0.3 .  The ordinals do not constitute a set: no multiple-form can 
total ise them. There exist pure natural multiples, but Nature does not 
exist. Or, in Lacanian terms: Nature is not-al l ,  j ust as is being qua 
being, since no set of a l l  sets exists either. 

lOA. The anchoring of the ordinals in being as such is twofold. 
The absolutely initial point that assures the chain of ordinals of 

its being is the empty set 0, decided axiomatical ly as secularised form, 
or number-form, of Nothingness . This form is noth ing other than 
the situation-name of being qua being, the suture of every situa­
tion-being, and of every language, to their latent being. The empty 
set being an ordinal, and therefore a natura l multiple, we might say: 
the point of being of every situation is natural .  Material ism is founded 
upon this statement. 



84 CONCEPTS: NATURAL MULTIPLICITIES 

10 .5 .  The point- l imit that ' restarts' the existence of the ordinals 
beyond Greek number (the finite natural whole numbers; on Greek 
number, see chapter 1 )  is the first infinite set, (0, decided axiomatically 
as a secularised form - and thus entirely subtracted from the One - of 
infin ite multipl ic ity. 

From this point of view, the ordinals represent the modern scale 
of measurement (conforming to the two crucial decisions of modern 
thought) of natural multipl icity. They say that nothingness is a form 
of natural and numerable being, and that the infin ite, far from being 
retained in the One of a God, is omnipresent in nature, and, beyond 
that, in every s ituation-being. 

1 0.6. Our passage through the ordinals (or the l imits of our repre­
sentation of them) arranges them according to an untotalisable 
sequence. Th is sequence ' starts ' with O. It continues through the 
natural whole numbers ( 1 ,2,  . . .  ,n,n + 1 ,  . . .  , etc . ) ,  numbers whose 
form of being is composed of the void ( in  the forms (0 ) , (0 , (0 ) ) , (0 , (0 ) ,  
(0 , ( 0 ) ) ) ,  . . .  , etc . ) .  I t  is  continued by an infinite ( re )commencement, 
guaranteed by the axiom 'a l imit ordinal exists ' ,  which authorises the 
inscription, beyond the sequence of natural whole numbers, of (0, the 
first infinite ordinal .  This recommencement opens a new series of 
successions: (0, (0 + 1 ,  . . .  , (0 + n, . . .  , etc . This series is closed beyond 
itself by a second l imit ordinal ,  (0 + (0, which inaugurates a new series 
of success ions, and so on. Thus we achieve the representation of a 
series of ordinals, deployed with no conceivable stopping point, 
which trans its within the infinite ( beyond (0) j ust as in the finite. 

1 0.7. The ordering principle of this sequence is in fact belonging 
itself: given two ordinals WI and W2, then WI  E W2, or W2 E W I .  
or  WI = W2• Belonging, a unique ontologica l relation because it 
governs the thinking of multiple-being as such, is also that which 
totally orders the series of ordinals .  So that, if  W is an ordinal and 
S(W) its successor, then W E S (W) .  So that, if n is a natural whole 
number (a  fin ite ordinal )  and n' a ' larger' whole number, then n E 
n'. And so that, for any natural whole number n whatsoever, n E (0 
(the first infinite ordinal ) ,  etc. 

1 0.8 .  There are three types of ordinal (after the modern decisions 
which impose the void and the infinite ) :  

1 The empty set, 0, is the inaugural point of being. 
2 The successor ordinals adjoin to their predecessor one element, 

namely that predecessor itself. The successor of W is called S(W).  
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W is the maximal element in S (W),  and the presence of a maximal 
element al lows us to characterise successors in a purely immanent 
(non-serial )  fashion. Successor ordinals give us a numerical schema 
for what it means to say 'one more step' .  This step consists always 
in supplementing all that one has at one's disposal ,  with a unique 
mark for that al l .  To take 'one more step' comes down to making 
one of al l  of the given multipl icity, and adjoining that one to it . 
The new situation is 'maximalised ' :  it contains one term that 
dominates a l l  the others. 

3 The l imit ordinals have no maximal internal element. They mark 
the beyond proper to a series without stopping point. They do 
not succeed any particular ordinal ,  but it can be said that they 
succeed all the ordinals of the sequence of which they are the 
limit. No ordinal in this sequence is 'closer' to the limit ordinal 
than any other. For a third ordinal, and ultimately an ' infinity' 
( in the intuitive sense of a series with no stopping point) of ordi­
nals, will intercalate themselves ( according to the order-relation, 
which is belonging) between every ordinal of the sequence and 
the limit ordinal .  The l imit ordinal adheres to everything that 
precedes it. This is specifically indicated by its identity with its 
own dissemination (L = uL). The l imit totalises the sequence, but 
does not distinguish any particular ordinal within it. 

10.9. Just as a l imit ordinal is structurally different from a successor 
ordinal (as regards the internal  maximum, and as regards dissemina­
tion ) ,  so the 'passage to the l imit' is an operation of thought entirely 
different from 'taking one more step' .  

Succession is, in genera l, a more difficult local  operation than the 
global operation of passage to the l imit. Succession gives us more to 
think about than does the l imit. The widespread view to the contrary 
stems from the fact that, not being 'absolutely modern' ,  we sti l l  tend 
to sacralise the infinite and the l imit, wh ich is to say: retain them sti l l  
in the form of the One. A secularised thought, subtracted from the 
One and the sacred, recognises that the most redoubtable problems 
are local problems, problems of the type: 'How to succeed ? ' ,  'How 
to take one more step? ' .  

10. 10. The space of the ordinals al lows us to  define the  infinite and 
the finite. An ordinal is fin ite i f, in the chain of order governed by 
belonging, it comes before 0). It is infinite if it comes after 0) ( includ­
ing 0) itself) .  

We wil l  find that, j ust a s  Dedekind's intuition suggested, only the 
existence of an infinite ordinal permits us to define the finite. Modern 
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thought says that the first situation, the banal situation , is the infinite. 
The finite is a secondary situation, very special , very s ingular, 
extremely rare. The obsession with 'fin itude' is a remnant of the 
tyranny of the sacred. The 'death of God' does not deliver us to fini­
tude, but to the omnipresent infinitude of situations, and, correla­
tively, to the infinity of the thinkable. 

1 0. 1 1 .  The final synthetic recapitulation of the fact that the ordinals 
give us to think being qua being, in its natural proposition, is 
complete. Now we must turn towards our capacity to traverse and 
to master rational ly this donation of being. One way to do so is 
simply to proceed, in this boundless fabric, to the carving-out of 
Number. 

10 . 12 .  It is a blessing for our subj ective finitude that the authority ­
properly without measure - of natural multiplicities al lows that diag­
onal of passage, or of j udgement, which is reasoning by recurrence, 
also cal led complete induction and, in the case of infinite ordinals, 
'transfin ite induction' .  In fact this a lone a l lows us, in treating of an 
infin ite domain (and even, if we consider the ordinals, one that is 
infinitely infinite ) ,  to anticipate the mome1tt of conclusion. 

Suppose that we wish to show that all ordinals possess a certain 
property P. Or that we wish to establish rationally, with a proof, a 
universal statement of the type: 'For a l l  x, if x is an ordinal ,  then 
P(x) , .  How can this be achieved ? It is certainly impossible to confirm 
case by case that it is so: the task would be infinitely infinite. Neither 
is it possible to consider the 'set of ordinals ' ,  s ince such a set does 
not exist. The 'al l  of the ordinals ' ,  implied in the universal quantifier 
of the statement ' for all x', cannot be converted into 'all the elements 
belonging to the set of ordinals ' . Such a set is inconsistent ( see 6. 1 1 ) . 
It is precisely the al leviation of this impasse that is the business of 
reason ing by recurrence. 

10. 1 3 .  Reasoning by recurrence combines one verification and the 
demonstration of one implication . Once in possession of these two 
moments, the structure proper to the ordinals authorises the universal 
conclusion. 

Take property P. We begin by confirming that the empty set 0 pos­
sesses this property; we test P for the 'case' of O. If the empty set does 
not possess the property P, it is pointless to pursue the investigation. 
If one ordinal ,  0, does not have property P, it is certainly fa lse that 
all ordinals do. Suppose, then, that the statement P(O )  is true, that 
the test in the case of 0 is positive. 
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We wil l  now try to prove the fol lowing implication : if al l  the 
ordinals that precede some ordinal W (according to the tota l ordering 
of the ordinals, which is belonging) have the property P, then W also 
has it .  

Note that this implication does not tell us that an ordinal with 
property P exists . It remains in the hypothetical register, according 
to the general pattern : 'if x i s  so, then what fol lows x i s  so'. The 
implication is really un iversal ,  it does not specify any ordinal W. It 
says only that, for every ordinal W, supposing that those which 
precede it in the chain of ordinals satisfy P, one is compel led to admit 
that W satisfies it also. 

It is usually necessary to d ivide this demonstration ( suppos ing that 
it is possible, which obviously depends on property P), by treating 
the case where we suppose W to be a successor separately from the 
case where we suppose it to be a l imit (s ince W is any ordinal what­
soever, it could be one or the other) .  Reasoning by recurrence, as we 
saw in the central impl ication that constitutes it, strongly binds that 
which is the case for an ordinal W to that which is that case for the 
ordinals that precede it. Now the relationship of a l imit ordinal to 
the anterior ordinals (one of infinite adherence) differs radical ly from 
that of a successor (which, between itself and its predecessor, clears 
an empty space ) .  Because of this, the procedures of thought and of 
proof put into play in the two cases are usually heterogeneous. And, 
as we might expect, given the phi losophy of this heterogeneity (d. 
9. 19 ) ,  it is generally the case of the successor that is the most 
difficult. 

Assume that we have verified the truth of P (O ) ,  and that we have 
proved the implication ' i f, for every ordinal w that precedes W (that 
belongs to W: order is belonging) ,  it is the case that P(w), then it is 
also the case that P(W) ' .  We can conclude that all ordinals satisfy P, 
in spite of the fact that this 'a l l '  not only al ludes to an infinitely infi­
nite immensity of multiples, but that, even so, it does not make an 
All. It is truly the infinite and inconsistency 'conquered word by 
word' .  

10.14. What authorises such a passage to 'a l l ' ,  such an ambitious 
'moment of conclusion' ?  The authorisation is granted us by a funda­
mental property of the ordinals as ontologica l schema of the natural 
multiple: their 'atomistic' character, the existence, for every property 
P, of a minimal support for this property as soon as one ordinal pos­
sesses it. ( See 8 . 10  and 8 . 1 5 ) .  

I f  the conclusion were false - i f  i t  were not the case that a l l  ordinals 
possess property P - that would mean that there was at least one 
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ordinal which did not possess property P. This ordinal would then 
possess the property not-P, not-P meaning simply 'not possessing 
property P, being a non-P'. 

But, if  there exists an ordinal that possesses property not-P, there 
exists a smallest ordinal which possesses this property 1ZOt-P, by 
virtue of the atomistic principle, the principle of minimal ity. And, 
s ince it is the smallest to possess property not-P, a l l  those which are 
smaller than it must possess property P. 

We could object: these ordinals 'smaller than it' may not exist, 
because it is possible that the minimal ordinal for the property not-P 
is the void, which is not preceded by anything. But no: s ince (first 
moment of our procedure ) we have verified precisely that 0 possesses 
the property P, the minimal ordinal for not-P cannot be o. Thus it 
does make sense to speak of ordinals smaller than it; they exist, and 
must all possess property P. 

Now our central implication, supposed proved, said exactly that, 
if  all the ordinals smaller than a given ordinal possess property P, 
then that ordinal also possesses it. We have reached a formal contra­
diction : that the supposed minimal not-P must be a P. It is  necessary 
then to conclude that this latter does not exist and that therefore al l  
ordinals do possess property P. 

Thus the ontological substructure of natural mutiplicities comes 
to found the legitimacy of recurrence. Our verification (the case of 
0) and our demonstration ( i f  P(w) for all w such that w E W, then 
P(W) also) ,  if  it is possible (which depends on P . . .  and on our math­
ematical know-how),  authorises the conclusion for 'all ordinals ' .  

1 0. 1 5 .  We have remarked, in studying Peano's axiomatic ( see 5 . 3 )  
that reasoning by  recurrence is a fundamental given of serial numeri­
cal ity, of wh ich the natural whole numbers are an example. It is quite 
natural that it should extend to that 'universal series' composed by 
the ordinals .  But the great difference is that, whereas in Peano the 
principle of induction or recurrence is an axiomatic form or a formal 
disposition, here, since it is  founded in being ( in the theory of the 
pure multiple ) ,  it is  a theorem - that is, a property deducible from 
the ordinals. 

It is of the essence of the natural multiple, which escapes al l  total is­
ing thought, to submit itsel f  nonetheless to that intellectual 'capture' 
which is the inductive schema. Here, once more, being is found to be 
amenable to thought in that form of Number which is the conclusion 
for 'a l l ' ,  proceeding both from the verification for one only (here, 0) 
and from a general procedure which transfers the property of what 
comes 'before' (predecessor or endless series, depending on whether 
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it is a case of a successor ordinal or a limit ordinal )  to what comes 
'after' .  Number is that which accords being to thought, in spite of 
the irremediable excess of the former over the latter. 

10 .16 .  Reasoning by recurrence is a proof-procedure for universal 
statements concerning ordinals .  It al lows us to conclude. But there is 
a more important usage of recurrence, or of transfinite induction, one 
which al lows us to attain the concept. This is inductive definition.  

Suppose that the aim of our thinking is not to prove that th is  or 
that type of multiple, for example ordinals, has property P, but to 
define property P in a way that would al low us then to test it on 
multiples. A wel l-known difficulty in such a case is that we don 't 
know in advance whether a property defined in language is 'applica­
ble ' to a pure multiple without inconsistency resulting. We have seen, 
for example (in 2 . 1 1 ) , that the property 'not being an element of 
itself' does not apply to any existing set, and that its perfect formal 
correctness does not a lter the fact that, handled without care, it  leads 
to the ruin, by way of inconsistency, of a l l  formal thought. But how 
can we introduce l imitations and guarantees, if  language a lone cannot 
support them ? The procedure of definition by recurrence, or inductive 
definition, answers this question . 

10. 1 7. What wil l  found the legitimacy of the procedure this time is 
the fact that, with the ordinals, we have at our disposal a sort of 
universal scale, which al lows us to define property P at successive 
levels, without exposing ourselves to that danger of inconsistency that 
attends on any supposition of an All. Inductive definition is a ramifi­
cation of the concept: property P wil l  not be defined 'in general ' ,  but 
always as indexed to a certain level ,  and the operators of this index­
ation will be the ordinals. Here, once again, being comes to the aid 
of finitude, in assuring for our thought, which the domain of being 
as pure multiple exceeds on all sides, that it can proceed in steps, in 
fragments . 

10. 1 8 . In conformity with the typology of ordinals, which distin­
guishes three types ( the void, successors, l imits ) ,  our procedure is 
divided into three. 

1 We first define explicitly, with a statement, level 0 of the pro­
perty. An explicit definition assumes that we have a property -
say, Q - already defined, and that we can affirm that level 0 of 
P - say Po - is equivalent to Q. We would then have: Po (x ) H 
Q(x ) .  
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2 We then say that, if level w of P is defined, Pw, then level S (w),  
that is, PS(w)' is defined through an explicit procedure to be indi­
cated. To say that Pw is defined is to say that there is a property 
- cal l  it R - already defined such that P w is equ ivalent to it, so 
Pw(x ) H R(x) .  The existence of an explicit procedure enabling us 
to pass from the definition of P w to that of PS(wl means that there 
is a function f that assures the passage of R (which defines Pw) to 
a property f(R ) which wi l l  define PS(w) ' Finally, we can say that 'x 
has the property PS(w) '  means 'x has the property f(R ) ' , or that f, 
which permits the 'passage' from the definition of P w to that of 
PS(w)' is an explicit operation on R, fixed once and for al l .  

3 Finally, we wil l  say that, if al l  the levels of P below a limit ordinal 
L have been defined, say: PO,Ph • • •  ,Pn,Pn+ h • • •  , then level L of 
P, say for example Pw, is defined by a 'recol lection' that can be 
explicated by that which defines a l l  the levels anterior to it ( in 
this process, union or dissemination general ly plays a decisive 
role, for reasons given in 9. 1 7) .  Usually we have something like: 
for a given x, Pdx) is true, if there exists a level below L, call it 
w, where w E L, for which P w (x ) is true. The limit level ,  in con­
formity with its essence, wil l  assume all the inferior levels and 
wil l  not introduce anything new. 

Thus we will have at our disposal not just a single concept P, but an 
infinite and infinitely ramified family of concepts, from Po, explicitly 
defined, up to the more considerable ordinal indexations P w, passing 
through Pn,PO)'Protn, etc. We will then be able to say that concept P, as 
unique concept, is defined by transfinite induction, in the following 
sense: for a given x, P(x) will be true if and only if there exists an ordinal 
W such that x possesses the property at level W. We would have the 
following equivalence: P(x ) H 'there exists a W such that Pw(x) ' .  

So the inductive mastery of the concept passes by way of its ordinal 
ramification, and by way of the equiva lence between 'the concept P 
holds for x' and 'the concept P holds for x at level W of that concept' . 
This equivalence avoids all mentioning of the All. It tests the property 
P not ' in genera l ' ,  but on one level, thus free ing it from paradoxes of 
inconsistency. 

10 . 19. I shal l  give a most interesting example; its interest is both 
intrinsic ( it sheds a keen l ight on the general structure of the theory 
of the pure multiple, or ontology: it proves that, thought in their 
being qua being, multiples are stratified ) and methodological (we will 
see clearly the functioning of levels in the definition of the concept ) .  
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The underlying idea i s  to  define, for each multip le, an ontological 
rank, indexed on the ordinals, which measures its 'distance' ,  in a 
certain sense, from that initial suture which is the empty set. We 
could also say that the rank is a measure of the complexity of a 
set, of the immanent intrication of the instances of the void that 
constitute it. 

Natura lly, it is impossible to speak of 'all ' sets : to do that it would 
be necessary to collect them as the elements of a set of al l  sets, which 
would be inconsistent. The prudent, gradual approach of the induc­
tive procedure is indispensable here. 

The two important operations of set theory wh ich a l low one to 
'step' from one set to another are: 

1 Union, or the set of elements of elements of the initial set; the 
operation of dissemination, which we have already met (compare 
9. 1 5 ) .  Given a set E, we denote its un ion by uE. 

2 The set of parts, which consists of 'gathering together' to make 
one al l  the parts of the in itial set, al l  that is included in that set 
(on belonging and inclusion, see 7.3 ) .  We denote by pIE )  the set 
of the parts of E. Note that the elements of pIE) are the parts of 
E: if e E PIE ) ,  then e c E. 

We will construct the hierarchy of ranks by means of these two 
operations . The property we wi l l  try to define through transfinite 
induction, according to the method explained in 10 . 18 ,  wi l l  be 
denoted by R(x),  to be read as: 'x possesses a rank' (or: 'x is well­
founded' ) .  Our three steps wil l  be as fol lows: 

1 Explicit definition of the property at lellel O. We propose that 
Ro(x ) is not true for any x, in other words that Ro(x) is equivalent 
to x E O. 

2 Uniform treatment of successive levels . We posit that Rs(w) (x) is 
true if and only i f  x belongs to the set of parts of the set consti­
tuted by al l  the z which satisfy Rw. In other words, the rank at 
successor level S(w) is the set of parts of the rank defined for the 
level which the predecessor w indexes . This can be written as 
follows: Rs (w) (x ) H ( (y E x) � Rw(Y) ) :  i f  x satisfies Rs(w) ,  the ele­
ments of x satisfy Rw, and consequently x is a part of the set of 
sets which satisfy Rw. We could also write, denoting by Rw the 
set of x for which Rw(x) is true: 
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3 Uniform treatment of limit levels. As would be expected, it is 
union that is at work here. We wil l  say that Rdx) i s  true if x is 
of a rank whose index is smaller than L, that is, if  there exists 
a W E  L for which Rw(x) i s  true. Thus the rank RL recol lects all 
the elements of the ranks below it; it is the union of these ranks. 
With the same conventions as above, we can write: (x E Rd 
H x E uRw for all W smaller than L. 

Property R is thereby total ly defined by induction. We wil l say that 
x possesses a rank, or that R(x) (without index) is true, if a ( successor 
or l imit) ordinal  W exists for which Rw(x) is true. This property 
'means' that one arrives at the complexity of x, beginning from 0 
(wh ich defines level Ro of the property ) ,  through the successive 
employment of union and of passage to the parts, an employment 
whose ' length' is measured by an ordinal :  the smallest ordinal w for 
which Rw(x) is true. 

10.20. That this procedure real ly 'works', that it makes sense ulti­
mately to speak of the property R, however, is not self-evident. The 
generosity of natural being consists in the fact that one can prove the 
effectivity of this ramified determination of the concept. ' 

Thus thought proceeds in its passage through being, under the 
universal ly intricated and h ierarchised rule of Nature, which doesn't 
exist, but provides measurable steps. Number is accessible to us 
through the law of such a passage, at the same time as it sets the 
conditions - as we saw with the ordinals - for this passage itself. 
Number is that through which being organises thought. 



I I 

Natural Whole Numbers 

1 1 . 1 .  The ordinals directly give us the Greek numbers: natural whole 
numbers. We are even in a position to attach a new, non-Greek, 
legitimacy to the adjective 'natural '  which mathematicians, with the 
symptomatic subtlety of their nominations, adjoin to the civil status 
of these numbers: they are 'naturals' by virtue of the fact that, within 
the realm of the finite, they coincide purely and simply with the 
ordinals, which constitute the ontological schema of the pure natural 
multiple. 

For it is 'natural '  to identify, in its being, the place of number ( that 
is, of whole number) - a place whose existence Dedekind vainly tried 
to secure on the basis of the consideration of 'all the possible objects 
of my thought' - with the first infinite ordinal 00, whose existence we 
decide, under the modern inj unction of being, as we enounce the 
axiom 'a limit ordinal exists ' .  

1 1 .2.  To say that 00 is the place of whole number has a precise set­
theoretical meaning: what 'occupies' the place is that which belongs 
to it. Now, not only do all ordinals that precede a given ordinal 
belong to it ;  they constitute all the elements of that initial ordinal .  

In fact, we know that total order over the ordinals is real ly belong­
ing ( see. 8 . 10 ) .  And, consequently, an ordinal smaller than a given 
ordinal W is precisely an ordinal that belongs to W. The image of an 
ordinal ( for example, one larger than (0) is as follows: 

O e  l e 2 e . . .  e n e n + l e  . . .  e oo e oo + l e . . .  e W  
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where al l  the numbers in the chain of belonging constitute precisely 
the elements of W. Visual ised like this, the ordinal W appears as a 
sequence of 'embedded' ordinals, whose ' length' is exactly W. There 
are W links in the chain in order to arrive at W. We might also see 
an ordinal W, containing exactly W ordinals (a l l  those that precede 
it) ,  as the number of that of which it is the name. Which is another 
way of saying that it is identified with the place where its predecessors 
insist, being the recol lection of that insistence. 

Thus the defin ition of natural whole numbers is entirely l impid: 
an ordinal is a natural whole number if it is an element of the 
first l imit ordinal co. In which case, the structure of the place of 
number is: 

O e  l e 2 e . . .  e n e n e n + l e . . .  e co  

But we must take care to note that co itself, which is the name of 
the place, is not a part of it, since no set belongs to itself (d. 8 . 14 ) .  
The place of  whole number, co,  is not an  element of that place, i t  is 
not a whole number. As CO is the {irst l imit ordinal, it fol lows that all 
whole numbers, except the empty set 0 of course, are successors. 

1 1 .3 .  An attentive reader might object as follows: I say that co i s  the 
first l imit ordinal .  But am I sure that a 'first' l imit ordinal exists ? The 
Axiom of Infin ity (9.20) says only: 'a l imit ordinal exists ' ,  it does not 
specify that this ordinal is 'the first ' .  What authorises us to call co the 
'fi rst l imit ordinal' ,  or first infinite ordinal ? It could well be that, as 
soon as I announce that 'a limit ordinal exists ' ,  a multitude of them 
appear, none of which is 'first ' .  There could be an infin ite descending 
chain of such ordinals, j ust like the descending chain of negative 
numbers which, it is c lear, has no first term: no whole negative 
number is 'the smallest ', just as no whole positive number is 'the 
largest' (this second point in fact comes back to saying that co, the 
beyond and the place of the series of positive numbers, is a l imit 
ordinal ) .  

But i f  I cannot unequivocally determine and fix  the first limit 
ordinal, then what becomes of my definition of whole numbers ? 

1 1 .4.  We can overcome this objection, once more, thanks to that 
great principle of natural multiples that is minimality .  We know that, 
given a property P, if an ordinal exists that satisfies that property, 
then there is one and only one minimal ordinal that satisfies it. Take 
the property 'being a l imit ordinal ' .  There certainly exists an ordinal 
that satisfies it, s ince the Axiom of the Infinite says precisely that. 
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Thus, there exists one and only one l imit ordinal that is minimal for 
this property. Consequently we can speak without hesitation of a 'first 
l imit ordinal ' ,  or of the 'smal lest l imit ordinal ' , and it is to this unique 
ordinal that we give the proper name 00. There is therefore no ambi­
guity in our defin ition of natural whole numbers. 

1 1 .5 .  We must never lose sight of the fact that notations of the type 
t ,2,n, etc. are ciphers, in the sense of codes, which serve to designate 
multiples fabricated from the void a lone. We have known for a long 
time (a lready in 8 .3 )  that t is in rea lity the singleton of the void, that 
is, (0 ) ,  that two is  the pair of the void and the singleton of the void, 
that is, (0 , (0 ) ) ,  that three is the triplet of the void, the singleton of 
the void, and the pair of the void and singleton of the void, that is, 
(0 , (0 ) , (0, (0 ) ) ) ,  etc . To exhibit further this weaving of the void with 
itself, let's also write down the real being of the cipher 4: 
(0 , (0 ) , (0 , (0 )  ) , (0 , (  0 ) , (0 , ( 0 ) ) ) .  

Evidently 4 i s  a set of four elements, in the order 0, then ( 0 ) ,  then 
(0 , (0 ) ) ,  then (0 , (0 ) , (0, ( 0 ) ) ) .  These four elements are none other than 
zero, 1 , 2 and 3. The elements of a whole number comprise precisely 
all those numbers that precede it, which is not surprising, s ince we 
have shown above that this is the innermost structure of every ordinal 
( 1 1 .2 ) .  We could write: 4 = (0 , 1 ,2,3 ) .  And, as we have said, to pass 
from 3 to 4 (as from any n to n + 1 ) , we 'adjoin' to the elements of 
3 (or of n)  the number 3 itself (or the number n). Which is not sur­
prising, since this is the general definition of succession in the ordinals 
(9 .6) .  

I t  would obviously be impossible to use the procedure of succes­
sion to 'step' from some whole n, no matter how large, to the first 
limit ordinal 00. This is because 00, let us repeat, is not a whole 
number, it is the place of such numbers. An important law of thought 
emerges here (one which, we might say in passing, the Hegelian figure 
of Absolute Knowledge, supposed to be the ' last' figure of Conscious­
ness, contravenes ) ,  which states that the place of succession does not 
itself succeed. 

1 1 .6. Once we have at our disposal the place of natural whole 
numbers, their multiple-being which weaves the void through the 
finite, and the law of succession as law of our passage through these 
numbers, we 'rediscover' the classical operations (addition and mul­
tiplication for example) through simple technical manipulations that 
arise from the genera l principles of inductive defin ition, or definition 
by recurrence, expla ined and legitimated on the basis of natural being 
in chapter 1 0. It is time to give a new example. 
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1 1 .7. Take a given number, say tor example 4 .  We want to define 
through induction a function F whose outcome will be as fol lows: 
for any number n whatsoever ( therefore for every whole number, and 
there is an infin ity of them) ,  F(n) is equal to the sum 4 + n. To achieve 
this, we have at our disposal only one operator: ordinal succession, 
since the only thing we know is that al l  the whole numbers except 0 
are successors. We wil l  proceed exactly according to the schema 
explained in 1 0. 1 8 ,  except that we will not have to worry ourselves 
about the case of l imit ordinals ( s ince there are none before (0) . We 
wil l ,  as before, use S (n )  to denote the successor ordinal of the whole 
number n. 

1 We wil l  first state: F (O )  = 4 (an explicitly given value, the underly­
ing intu ition being that 4 + 0 = 4 ) .  

2 Then we wil l  proceed to the successional induction by positing: 
F (S (n ) )  = S (F(n ) ) .  A regular and uniform relation between the 
value of the function for S(n )  and its value for n, a relation that 
uses only what we a lready know; the operation of succession, 
defined in genera l on the ordinals .  The underlying intuition is that 
4 + (n + 1 )  = (4 + n)  + 1, to return to the usual 'calculating' nota­
tion where the successor of n is denoted by n + 1 .  

The value of the function i s  defined entirely by these two equa­
tions. Say, for example, that I wanted to calculate F (2 ) .  I would have 
the fol lowing mechanical sequence: 

F (O )  = 4 

F( 1 )  = (F (S (O ) )  = ( S (F (O ) )  = S(4)  = 5 

F(2)  = (F (S ( 1 ) )  = ( S (F( 1 ) ) = S(5 ) = 6 

We can see clearly that such a schema is a true definition of addi­
tion, through the use of recurrence, on the basis of the operation of 
succession alone. Once we have obtained this general inductive 
schema of addition, multipl ication can be simi larly defined. Take the 
function to be defined, P( n ) ,  whose value is n multiplied by 4. We 
begin the induction this time with 1 and not with 0, stating that if 
F(n) is as above (defin ing 4 + n inductively ) :  

P( 1 )  = 4 (guiding intuition : 4 x 1 = 4)  

P( S (n ) )  = F(P(n ) )  (guiding intuition : 4 x (n  + 1 )  = 4 + (4 x n) )  
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These technical manoeuvres are of no direct interest. They serve only 
to convince us that whole numbers thought in their being ( ordinals 
that precede 00, fabricated from finite combinations of the void) are 
indeed also the same ones with which we count and recount without 
respite, as the epoch prescribes us to do. 

1 1 .8 .  The phi losoph ico-mathematical reconstruction of whole 
numbers is now complete. They do not derive from the concept 
( Frege) ,  nor can their place be inferred from our possible thoughts 
(Dedekind ) ,  nor is their law l imited to that of an arbitrari ly axioma­
tised operational field (Peano ) .  They are, rather, in the retroaction of 
a decision on the infinite, that part of number which being provides 
to us in its natural and finite figure. 

The whole numbers are Nature itself, in so far as it is exposed to 
thought only to the l imited extent of its capacity for finitude. Again, 
this exposition is possible only on condition of a point of infinity, the 
l imit ordinal 00, the existential guarantee of whole number. This point 
of infinity is immense in relation to the whole numbers, since, sub­
tracted from successoral repetition, it constitutes the p lace of their 
total exercise, a place without internal l imits ( succession can always 
continue ) .  Nevertheless, it is minute in relation to the profusion of 
natural infinite being beyond its first term 00. Whole number is the 
form of being of the finite 'a lmost noth ing' deployed by being qua 
being between the void and the first infinity. 

1 1 .9. It is only in an anticipation without sol id foundation, and in 
homage to their antiquity, that we cal l  the natural whole numbers 
'numbers ' .  We have already remarked (8 . 8 )  that, sti l l  without a 
general concept of number at our disposa l ,  it would be i l legitimate 
to say that the ordinals were numbers. Now, the whole numbers are 
none other than the ordinals . And number, or rather Number, qual i ­
fies a type of being of the pure multiple wh ich exceeds the ordinals .  
Until we have made sense of this type, in such a way that it becomes 
applicable to all species of number (whole, relative, rational ,  real ,  
ordinal, cardinal ) ,  we can only speak of 'number' in a sense sti l l  
insufficiently l iberated from its operational intuition, or from the 
historical heredity of this signifier. 

But our preparations are complete. The homage paid to the Greek 
numbers is only the last act of a vast introduction, genealogical  and 
then conceptual .  Now it is necessary to define Number. 
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The Concept of N u m ber: 
An Evental Nomination 

12. 1 .  The first part of this book was h istorical and critica l  ( a  study 
of the great enterprises of the past ) .  The second was constructive and 
conceptual ( the determination of the ordinals as schema of natural 
multiplicity, on the basis of the concept of transitive sets ) .  In this 
third part, we are going to proceed regressively, axiomatical ly: we 
shall begin with a general definition of Number, a remarkably simple 
definition involving only the concept 'ordinal ' .  Then, by way of 
increasingly specific determinations, we shal l  address the essential 
attributes of the resulting concept of Number: total order, the process 
of cutting, and finally - in the last place only - operations . In so 
doing, we shall demonstrate how al l  of our traditional numbers (the 
wholes, the rationals, the reals, and the ordinals themselves, con­
ceived and handled as Numbers )  are only particular cases of the 
general concept. 

In my view, the three most important aspects of these proceedings 
are as fol lows: 

1 Considerations of order and operations arise from the intrinsic, 
or ontological, definition of Number. Number is therefore not 
itself an operational concept, it is a particular figure of the pure 
multiple, which can be thought in a structural and immanent 
fashion. The operational dimensions are only subsequent 
traits. Number is not constructed; on the contrary, its very 
being makes possible all of the constructions in which we 
engage it. 
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2 The ordinals constitute the base material for the definition of 
Number, its natural ontological horizon. But, taken in al l  their 
general ity, Numbers are 'non-natura l '  deductions from this natural 
material .  

3 Our traditional numbers are only very specific cases, wh ich cer­
tainly fa l l  under the general and unified concept of Number but 
by no means exhaust it. There remains an innumerable immensity 
of Numbers we have not yet thought or used. 

12 .2 .  Definition: A Number is the conjoint givenness of an ordinal 
and a part of that ordinal. 

A Number will be denoted by the letter N, followed by indices to 
distinguish between several different Numbers. 

In other words, a number N is constituted by: 

- an ordinal W; 
- a subset F included in th i s  ordinal ,  such that F e W. 

The ordinal  wi l l  be cal led the matter of Number, which we wil l  
denote by M(N) .  

The part of  the ordinal w i l l  be  called the form of  the Number, 
which we wil l  denote by F (N) .  

That part of the matter which is not in  the form, that i s ,  those ele­
ments of the ordinal W which are not in the part F(N) ,  constitute the 
residue of the Number. We denote this by R(N) .  The residue is equal 
to the matter minus the form, and therefore to the set M(N) - F(N) .  

It is c lear that, if  we add together the form and the residue, we 
end up with the whole of the matter. Therefore, using u to stand for 
union ( see 9. 1 5 ) :  F(N )  u R(N) = M(N) .  

Since a Number is entirely determined by  its matter (an ordinal )  
and i ts  form ( a  part of that ordinal ) ,  it wil l  often be convenient to 
write it as a pair (M(N) ,  F (N) ) ,  with the convention that the ordinal­
matter is written to the left, and the form to the right. 

12 .3 .  In examining this definition, the reader must observe a number 
of precautions. 

( 1 ) We are deal ing with a pure definition, a priori for the moment: 
it is  of no use, nor is it possible, to try to 'recognise' straightaway, in 
this definition, any of our famil iar numbers . 

I wi l l  give an example: take as matter the ordinal 1 (whose onto­
logical composition is ( 0 ) ,  the s ingleton of the void ) ,  and, as form, 
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the ordinal 0, the void, which is of course a part of 1 ,  as it is a part 
of every set ( 7.9 ) .  Using the above convention, we have the Number 
N = ( 1 ,0 ) .  All we know is that, according to the defin ition (the result 
of an ordinal and a part of that ordina l ) ,  N is a Number. The signs 
' 1 '  and '0 '  do not d irectly refer to any Number, since we have not 
yet even established that we are deal ing with Numbers. In fact, what 
these signs 1 and 0 are going to indicate here - each on its own 
account, a matter and a form - cannot be understood as Numbers, 
since we do not d iscern in their writing the fundamental dual given­
ness of al l  Number: a matter and a form. A Number must involve 
two marks, that of its matter and that of its form: now ' 1 '  is only 
one mark, as is '0' . It would therefore be i l lusory to ' recognise' in the 
Number ( 1 ,0 )  any famil iar number whatsoever, on the pretext that 
one 'recognises' 1 or O.  At the moment, we have in ( 1 ,0 )  only an 
abstract example of a Number, conforming to the concept of Number 
given in the definition . 

Just as the prisoners in Plato's cave once again make the descent 
from the Idea (of Number) back down to the empirical (numbers ) ,  
we wi l l  demonstrate much later, in chapter 1 6 ,  that the Number ( 1 ,0 )  
is the true concept of the famil iar negative number -1 . But  at  this 
stage it is essential that the reader consider the examples as simple 
clarifications of the defin ition of Number, and not seek to reconnect 
them to the cavernous empirical domain of numbers. 

(2) The matter of a Number is an ordinal; we have said enough about 
ordinals for there to be no mystery about this. On the other hand, the 
form of a particular Number is constrained only to be a part of that 
ordinal, a set included in the ordinal. The general concept of a part (or 
subset) is somewhat indeterminate and, when the matter happens to 
be infinite, offers no foothold for intu ition . In particu lar, note: 

- that this part might be empty (compare the example above ) ;  
- that this part might be the entire ordinal ;  if we take for matter 

the l imit ordinal 00, and for form this same ordinal (which is a 
'total part' of itself), we obtain a wholly permissible Number 
(conforming to the definition ) ,  which is written N = (00, (0); we 
wil l  see in chapter 1 6  that there are excellent reasons to a llow 
that this Number is none other than the ordinal 00 itsel f, but at 
the moment this is not at all obvious; 

- that this part does not necessarily have to be contained or con­
nected as one; it could be dispersed, lacunary, composed of scat­
tered elements, and so on; for example, if we take as matter the 
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l imit ordinal 00, we can take as form the set constituted by the 
whole numbers 3, 5 87  and 1 1 65 .  These three finite ordinals are 
a l l  elements of 00, and therefore, taken together, they form a part 
of oo. We wil l  have a quite permissible number N = (00, (3 ,587, 1 1 65 ) ) ,  
whose form has three completely separate elements. 

12 .4.  These formal poss ibi l ities make a visual isation of Number dif­
ficult. We can imagine spatial designs somehow like this: 

ordinal-mailer 

residue 

I) Number whose form is  connected 

ordinal-mailer 

/ 
residue 

3) Number whose form is void 

ordinal-matter 

2) Number whose form is dispersed 

ordinal- mailer 

/ 

4) Number whose form takes up the 

whole of the mailer 

But doubtless the simplest way is to have recourse to a l inear 
arrangement ( see below) .  This figuration is based on ordinal l inearity, 
conceived as a universal series from which the being of Number is 
deducted. 

A line segment, whose supposed origin is the ordinal 0, represents 
the 'ordinal axis ' .  We mark with an asterisk "" upon this axis the 
matter of the Number, an ordinal W. We mark with an emboldening 
of the l ine the form of the Number, part of its matter. The rest, left 
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unchanged, represents the residue. If we want to represent a particu­
lar ordinal, we can do this with a l ittle circle on the arrow, with the 
name above or below. With these conventions, a Number wi l l  look 
like this: 

o form W = ordinal-matter 

• 
.�----�----�+ * 

residue ordinals 

Once again, this type of drawing can aid comprehension, but can 
also be an encumbrance. Its principal fai l ing, which it shares with the 
famous 'Venn diagrams' used to teach schoolchi ldren operations on 
sets (union, intersection, etc . ) ,  is that it habituates one to imagining 
that a part of a set is a sort of continuous whole, a compact neigh­
bourhood. Now the sole prerequis ite of a part is that it should 
contain only elements of the set of which it is  a part. These elements 
might very wel l  be highly dispersed, scattered to the far regions of 
the initial set, and the visual schema of a part, to indicate this d isper­
sion, must be able to be punctured, fragmented, dismembered. The 
unfortunate thing is that the drawing then loses any intuitive value 
it might have had: one s imply gets the impression that there are many 
parts . In looking at my l ines and their emboldenings, one must a lways 
keep in v iew, conceptually, that there is no reason for the form of 
a Number to be a continuous segment, but that it could well be 
dispersed throughout the ful l  extent of the ordinal-matter, as could 
the residue. 

For example, the Number mentioned above, which has for matter 
the limit ordinal (0 and for form the triplet ( 3 ,587, 1 1 65 ) ,  must be 
represented somehow like this (with the additional complication that 
the infinity of (0 is not truly 'commensurable' in a drawing) :  

o 3 
• • 

• 

587 
• 

• 
form 

1 1 65 ro 

• * 
• ordinals 

12.5 The fol lowing section is entirely dedicated to a phi losophical 
elucidation of our definition. 

We wil l  begin with the capital N with which I furnish Number. 
In a l l  attempts undertaken to determine the concept of number, 

the problems of terminology bring the weight of the event to bear 
upon the researcher. 
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Take for example the appellation ' i rrational numbers ' .  It is truly 
astonishing to find such a designation at the heart of mathematical 
rationality. The doctrine of 'cuts' forged by Dedekind is nothing other 
than the determination - wholly rational and demonstrative - of the 
concept of i rrational number. But exactly the same could be said for 
the theory of proportions in Eucl id 's  Elements . It is clear, then, that 
' irrational ' ,  in these mathematical texts whose rational ity is transpar­
ent, parad igmatic even, no longer has any signification. 

We might say that what makes itself known here is a symptom of 
the radical difference between nomination and signification. A signi­
fication is always distributed through the language of a situation, the 
language of established and transmitted know ledges . A nomination, 
on the other hand, emerges from the very inabil ity of signification to 
fix an event, to decide upon its occurrence, at the moment when this 
event - which supplements the situation with an incalculable hazard 
- is on the edge of its disappearance. A nomination is a 'poetic' inven­
tion, a new s ignifier, which affixes to language that for which nothing 
can prepare it. A nomination, once the event that sustains it is gone 
forever, remains, in the void of significations. 

Now, at the moment of the great Greek crisis of number, when 
the arrival of that at once inevitable and enigmatic event made it 
known that certa in relationships (those, for example, of the diagonal 
of a square and its side ) cannot be 'numbered' within the code of 
existing numbers, the word alogos arrived, saturating and exceeding 
the mathematical situation . This word designates that which, having 
no logos, nonetheless must be decided as number. It inscribes in a 
new situation of  thought a nomination without signification: that of 
a number which is not a number. 

Since that time, the word has lodged itself, without alteration, 
in mathematical language. It traverses translations, negl igible but 
subsistent. Our word ' irrational '  is unmindful of the import of 
the nomination alogos to the same extent that the word 'rational '  
retains l ittle of the Greek logos. And, above al l ,  this nomination 
has ended up taking on a univocal signification. But the contrast 
remains, and one can reactivate it - as I do - in between signification 
and that which, in the word that imparts it, contradicts it explicitly. 
For this contrast is the trace within language of a foundational 
truth -event. 

It can easily be shown that the same applies for 'real '  numbers, 
or for ' imaginary' numbers. Even Cantor's reason for cal l ing the 
ordinals beginning with ro 'transfinite' numbers becomes less and less 
obscure for us now, connected as it is to his mindfulness of offending 
the sanctity of the Infinite with his  invention . 
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The frequency in number-theory of a gap between the trace of a 
nomination and the sediments of signification indicates that the think­
ing of number is a true evental site: it represents in mathematics a 
zone of s ingular precarity and sensitivity, struck regularly by the 
excess of an event that language and established know ledges consider 
destitute of sign ification, and whose destiny can oilly be sustained by 
means of a poetic and supernumerary nomination. 

And this is because number is, amongst the forms of being, that 
one which opens onto our thought by way of its organisation ( see 
10.20) .  Which means that everything excessive that thought encoun­
ters in number, everything that interrupts the regime of its being 
by way of an evental caesura, has immediate disorganising effects 
for thought. 

12.6. My doctrine of Number, even i f  my terminology and the echo 
I give it in phi losophical thought are very different things, is neverthe­
less substantially that of 'surrea l  numbers' invented by J .  H.  Conway 
in the seventies ( see 1 . 7) . 1 I make no claim at all to having produced 
anyth ing new of a strictly mathematical order. Why, then, change 
'surreal number' to just 'Number', with a capital N ?  

I t  i s  basically a poetical disagreement. The nomination proposed 
by Conway seems to me rather too narrow; let's say that it belongs 
to an oneiric genre ( 'surreal '  obviously suggesting 'surrea list' ) ,  whereas 
the excessive nature of the d iscovery in my view demands the majestic 
genre of the epic, someth ing capable of conveying the unanticipated 
royal arrival of Number as such .  

More technically, it seems to me that 'surreal '  remains caught 
within the notion - al l  too h ighly charged with meanings - of a con­
tinuity through successive widenings . The adjective 'surreal '  seems to 
suggest itself because these new numbers 'conta in '  the rea l  numbers 
(as they contain the ordinals ) ;  as i f  the new space conquered was an 
extension of the old. In his book, Gonshor ( see 1 .7 ) ,  seeking to make 
propaganda for the surreals, declares that 'we now know the exciting 
fact that the surreals form a field contain ing both the reals and the 
ordinals . '2 But what is exciting in the discovery, at least for the phi­
losopher, goes wel l beyond this algebraic col lection of reals and 
ordinals. It relates rather to a complete reinterpretation of the very 
idea of number, to the possibi l ity of finally thinking number as a 
unified figure of multiple-being. That reals and ordinals arise within 
this figure is the least of the matter, a s imple consequence. And al l  
the more so given that, a long with reals and ordinals, the misnamed 
'surreals' contain an infinitely infinite throng of numbers whose exis­
tence no one has conceived of before, and which retroactively make 
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our historical  numbers seem like a min iscule deduction from al l  those 
abundant varieties of numerical being. To give just one example: 
surreal numbers permit a complete doctrine not only of infinitesimal 
numbers, but of an infinity of infinitely small numbers, describing a 
'downwards' numerical swarming j ust as vast as that which the ordi­
nals describe 'upwards ' .  

To use  a political image: the  nomination 'surrea l '  seems to  me to 
be marked by that caution, by that attachment to old significations, 
that characterises a certa in 'reformist' reserve when confronted with 
the event. Now, I th ink - I wager - that we must adopt the language 
of rupture here, the 'revolutionary' language. I wil l  say therefore that 
what takes p lace here is nothing less than the advent to our thought 
of Number. 

Ultimately the capitalisation of Number does not so much distin­
guish the genera from the species subsumed to it (whole numbers, 
rational numbers, real numbers, ordinal numbers, infinitesimal 
numbers, etc . )  - although it does indeed activate such a distinction ­
as it emphasises the gap between a nomination (here at last is Number) 
and the diverse significations that, having once been nominations 
themselves, have become the names of numbers. 

12 .7 .  Making thus our wager on the word Number, let us try to 
legitimise the definition: 'A Number is constituted by the conjoint 
givenness of an ordinal and a part of that ordina l . '  

The ordinals are the ontological schema of the natural multiple. 
An ordinal is a consistent natural unity, counted for one in the onto­
logical situation ( set theory ) .  These unities ( in the non-numerical 
sense of the pure and simple consistency of the multiple, of the 'gath­
ering together' of the multiples that constitute it, or belong to its 
presentation ) provide the material of Number, that on the basis of 
which there is Number, or more precisely that within which Number 
operates a section.3 The simplest way to think about this is to con­
sider that a Number extracts a form from its natural ordinal material ,  
as a part, p iece or fragment of it, a consistent unit of this material :  
an ordinal .  

12 .8 .  Because of their  antiquity, their un iversal ity, their simpl icity 
(which in fact masks a formidable complexity in the detai l ) ,  the 
natural whole numbers wil l  be our guide. We have seen (chapter 1 1 )  
that, thought according to their being, natural whole numbers are 
noth ing but a particular section in the infinitely infinite domain of 
ordinals :  the section that retains only the initial point of being of this 
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domain (the void ) and the 'first' successions, bounded external ly by 
OJ, the first l imit ordinal .  Or that the natural whole numbers extract 
and isolate, in the boundless fabric of natural multiples, only that 
which is finite. 

Why not continue in the same way ? It is certa inly more rational  
uniformly to attach the concept of Number to the ordinals in the 
mode of a section, than to deploy an anarchical selection of disparate 
procedures (a lgebraic, topological, set-theoretical . . .  , see 1 . 1 3 ) .  

O f  course, w e  must be sure this i s  possible. 'Possible'  meaning 
what ? That in this way we can find our famil iar numbers. It would 
certainly be arbitrary simply to impose, in the name of ontological 
simplicity, a concept of Number which would not subsume either the 
rational numbers or the real numbers. But if Number, as a section in 
a natural multiple, defines whole numbers as wel l  as rational (or 
fractional )  numbers, whole negative numbers as wel l  as rea l  numbers, 
infinitesimals as wel l  as ordinals, then nothing, in my view, can 
prevail against both the mathematical unity and the phi losophical 
novelty of such a concept. 

Moreover, the properly ontological simplicity of the idea of 'section' 
confirms that our wager is good. To say that a Number is constituted 
on the one hand by an ordinal (wh ich is the s ignature of the Number's 
belonging to the natural form of presentation ) ,  on the other by a part 
of that ordinal (which is the section as 'formation' in the natural 
materia l )  is to define Number by putting to work only the most ele­
mentary, 'basic' categories of the ontology of the multiple. 

12.9. Number wil l  then appear as the mediation between Nature's 
infinite prodigal ity of forms of being and that which we are in a 
position to traverse and to measure. It is that which, at least in a 
limited domain of its existence, accords our thought the capacity to 
grasp and measure being qua natural being. Something which every 
physics confirms. 

12 . 10. There is no doubt that Aristotle's language ( Matter and Form) 
is the most eloquent one for transcribing the idea of Number. In 
particular, it affords us the advantage of instal ling ourselves with in 
material ist metaphors. Th is is no negligible advantage when we know 
that, since Plato, on account of its apparent mystery, Number has 
been at the heart of al l  idealist representations of Nature. Up to, and 
including, what it has become under the law of Capita l ,  what it is 
today, as I recounted at the beginning of this book: the unthought 
basis of the ideology of the countable. 
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Since the section of Number always operates upon an ordinal, it 
can be said that, given any Number whatsoever, there a lways exists 
an ordinal  that is its matter. 'Matter' here has a very precise meaning. 
On the one hand, the ordinal is the 'basis '  of Number, that from 
which its form is sectioned. Thus it proceeds from one ordinal, from 
which an extraction is made, that there should be a Number qua 
principle of this extraction. On the other hand, we know that al l  the 
elements of an ordinal are ordinals ( see 8 .5 ) .  If the numerical ity of 
Number, what it sections, its form, is a part of an ordinal, then, since 
all the elements of a part of a set are obviously elements of that set, 
that which sections a Number must also be entirely composed of 
ordinals . 'Matter' this time means first matter. When we speak of the 
constituents of the numerical section, we are speaking exclusively of 
ordinals . It is an ordinal that is sectioned, and the elements of the 
section are also ordinals .  With regard to the categories of its matter, 
Number is natural through and through. 

12 . 1 1 .  The Aristotel ian metaphor is easily extended: we say that the 
product of the numerical section, in the ordinal that indicates its 
natural provenance and furnishes its matter, is the form of the Number. 
Number itself is rather the gesture of sectioning, which is why it is 
represented by the pair of its matter (an ordinal )  and its form (a part 
of that ordinal ) .  But in the form is concentrated that by virtue of 
which Number escapes its natural prescription, or at least might 
escape it. Because the form, being any part of an ordinal whatsoever, 
brings forth , with in a natural unity, a multiple which in general is 
not natura l .  

The form is, simply, a set of ordinals taken from among the ele­
ments of an ordinal .  This deduction distinguishes a part of the matter. 
Now, although every ordinal is a set of ordinals ( in fact, the set of 
ord inals which precedes it, 1 1 .2 ) ,  not every set of ordinals is neces­
sarily an ordinal. An ordinal has no holes; all ordinals that precede 
it belong to it, from the void 0 right up to itself. This is, moreover, 
why an ordinal is the name of its own ' length ' .  If, on the other hand, 
you take any set whatsoever of ordinals, there is a good chance that 
a great many ordinals will be missing, that the set will be ful l  of holes. 
It will therefore not itself be an ordinal .  Consequently, the form of 
a Number is usually not an ordinal ;  only its matter is. As might be 
expected in a material ist philosophy, it is matter that is homogenous, 
non-lacunary, regular, and form that is holey, irregular, non-natural .  
With the form of a Number we genera lly transgress the l imits of 
natural being, even if its material is always extracted from with in 
those l imits. 



CONCEPT OF NUMBER: AN EVENTAL NOMINATION I I I  

12 .12 .  If the form is a part extracted from an ordinal by the section 
which is Number - a (usually non-natural )  subset of a natural 
set - then it leaves a remainder; there is something l ike the leftover 
cuttings from the sculpting of the form in the ordinal-matter. Th is 
remainder is made up of those elements of the in itial ordinal that are 
not elements of the form of the Number, the portion of the matter 
that is not taken up in the form. We cal l  this the residue of the 
Number. 

Just l ike the form, the residue of a Number is a multiple made of 
ordinals. And, again just l ike the form, it is  usually not an ordinal ( it 
would be somewhat paradoxical if the residue was natural ;  it is so, 
nevertheless, in the specific case where the form cuts all ordinals out 
of the ordinal-matter without exception, starting from ordinal W) .  
The residue is obtained by the simple difference between the Matter 
and the Form. 

It might be objected that, in that case, form and residue are 
interchangeable. And, in a certain sense, that is the case. Contem­
porary art has blindly thought th is ambiguity in the composition 
of Number, by exhibiting as new works the res idue of works of 
art whose form is outdated. What wi l l  ultimately discriminate 
between the residue and the form of a given Number, though, wi l l  
relate to the law of order over Numbers, a law we shal l  study in 
chapter 1 3 .  

Note once more that taking the form and res idue together - the 
union of the form and the residue - restores the matter, that is, the 
ordinal we began with. The set-theoretical  triplet of matter, form and 
residue is a l l  there is to the numerical section. 

12. 1 3 .  Armed with these remarks, we can outl ine our programme of 
investigation into the concept of Number: 

• Study what it is that makes the difference between two Numbers, 
and understand the law of order that serial ises them and without 
which we would not, finite subjects that we are, have any hope 
of progressing in our knowledge of them. 

• Reconstitute algebra, the operational dimension of Number ( addi­
tion, multiplication, etc . ) ,  without which, constrained above all 
as we are by the ideology of the countable, no one would believe 
that Number is a number. We wil l  a lways hold firm to the point 
that the being of Number precedes operations, that Number is 
above al l  a thinking, on the basis of Nature, of a section that 
extracts a form from a natural unity th inkable as the matter of 
Number. 
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• Find again, in the infinitely infinite swarming of Numbers, in the 
incredible prodigal ity of being in numerical form, our h istorical 
numbers :  natural whole numbers, re lative whole numbers ( nega­
tive numbers ) ,  rationals ( fractional numbers ) ,  reals, ordinals . . .  

• Show that there exist infinitely more Numbers than we can know 
or can handle, that our h istorical numericality is most impover­
ished compared to the excess of being in Numbers. 

• Make sure, in this way, both that Number opens an authentic 
space for thought and that this thought explains in terms of effec­
tive operations only a minute part of al l  the types of Numbers of 
which multiple-being - as coupled to thought by set-theoretical 
ontology - is capable. 

12 . 14 .  This programme accomplished, we wil l  taste the bitter joy of 
Number, in  both its thinkable and its unthinkable aspects . Number 
wi l l  be entrusted to being, and we wil l  be able to turn ourselves 
toward the numberless effects of the event. 

Additional Notes on Sets of Ordinals 

N t .  The concept of Number makes central use of the concept of 'part 
of an ordinal ' ;  that is to say, of the concept of an arbitary set of 
ordinals extracted from a given ordinal . Some remarks must be made 
concerning the correct treatment of the notion 'set of ordinals ' ,  which 
incorporates that of a 'part of an ordinal ' ,  since all the elements of 
an ordinal are ordinals .  

N2. For a set of ordinals to be an ordinal it is necessary and sufficient, 
as we have noted, that it should have no holes, that no ordinal should 
disrupt the chain of belonging that binds the ordinals to each other 
up to the ordinal under consideration.  

N3. Since belonging is a total order over the ordinals, every set of 
ordinals is totally ordered by belonging. And this is the case whether 
or not it has holes. If X is a set of ordinals and Xl and Xz are elements 
of this set, then it is a lways the case either that Xl E Xz , or Xz E X l ,  

or  X l  = Xz. Thus the form and  the residue o f  a Number are totally 
ordered by belonging, j ust as its matter is .  What makes the form and 
the residue unnatural are the holes in them, not their order. The 
universal intrication of natural presentation prescribes its law to all 
the components of a Number. But what subtracts most Numbers 
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from the strictly natural domain of being resides in the lacks that 
affect their form (and therefore their residue) .  A Number is non­
natural in so far as its natural fabric is perforated. 

N4. Every set of ordinals has a minimal element. This resu lts once 
more from that important law of natural multiples, the principle of 
minimal ity ( see 8 . 10 ) .  Take X, a defined set of ordinals; and P, the 
property 'belonging to X'. If there exists any ordinal that possesses 
the property ( it is sufficient for this that X should not be empty ) ,  then 
there exists a smallest ordinal that possesses it. It is this smallest 
ordinal that is the minimal element of X:  it belongs to all the ordinals 
of X, but no ordinal of X belongs to it. 

The existence of a minimal element has nothing to do with whether 
or not the set has any holes. Therefore one can always speak of the 
minimal element of the form of a Number, or of the minimal element 
of its residue. As to the minimal element of its matter, this is a lways 
the empty set 0, since the matter is an ordinal .  

N5. We must be very careful on the other hand to observe that a 
given set of ordinals does not always have a maximal element. We 
have already seen that a l imit ordinal (which is a set of ordinals) has 
no maximal element (9. 14 ) .  A fortiori any set whatsoever of ordinals 
may very wel l  be infinitely 'open' ,  containing no element that domi­
nates a l l  the others. 

N6. However, there always exists an upper bound of a set X of 
ordinals. By 'upper bound' we understand the smal lest ordinal to be 
larger than every ordinal in X. Here again, the existence of an upper 
bound is guaranteed by the principle of minimal ity. Let P be the 
property 'being larger than al l  the ordinals that belong to X'. There 
certainly exists an ordinal that possesses this property , unless X is 
equivalent to the set of all the ordinals, wh ich is inconsistent. There­
fore there exists a smal lest ordinal which possesses the property P; it 
is the smallest ordinal to be larger than al l  the elements of X, and 
thus it is the upper bound of X. We will denote this upper bound by 
sup(X) .  

N7.  If a proper part of an ordinal ( a  part which is not the ordinal 
itself, a tru ly partial part) is an ordinal, then it belongs to the initial 
ordinal .  

We have known for a long time that the converse principle is part 
of the definition of ordinals . They are transitive, and so every ordinal 
that belongs to an ordinal is also a part of it. We now want to show 
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that every ordinal which is a proper part of an ordinal belongs to it. 
This comes back to saying that, between ordinals, the order of belong­
ing is equivalent to the order of inclusion . 

Suppose an ordinal W I  is a part of ordinal W2: WI C W2• Since 
belonging is a total order over the ordinals, and since WI is different 
from W2 ( it is a proper part of W2 ) ,  there are two possibi l ities : 

1 Either WI E W2, and the theorem is true, the ordinal WI which 
is included in W 2 belongs to it, the part is also an element. 

2 Or W2 E W I '  But, since WI is transitive, that would mean that 
W2 C WI ' Now we know that WI C W2• If one set is included in 
another, and the other included in it, then they are equal, as is 
intuitively obvious, and as the reader can prove in one line. Now, 
WI cannot be equal to W2, s ince it is a proper part of it. Thus the 
first case must hold, and the theorem is proved. 

So it is the same thing, when deal ing with ordinals, to say that one 
belongs to the other, and to say that one is included in the other. In 
other words, if an ordinal represents (as a part) another ordinal, then 
it also presents it (as an element) .  Which does not prevent an ordinal 
from having some parts which are not elements.  These parts will 
simply not be ordinals either. Th is would be the case, for example, 
with holey, lacunary sets, sets which begin in the middle of an ordinal 
chain or only present separated elements, etc . In fact it is generally 
the case with the form of a Number. 

If, however, the form of a Number is an ordinal, then it fol lows 
from the preceding arguments that not only is it a part of the matter 
(the initial ordinal ) ,  but also an element of it. Then the form is of a 
peculiar kind, l ike a 'corpuscle' of matter. In such cases, Number is 
less a representation extracted from Nature than a simple natural 
presentation. 



1 3  

Difference and Order 
of N u m bers 

13 . 1 .  A Number is entirely determined by its matter ( the ordinal 
from which its form is extracted) and its form . The residue is obtained 
by taking the difference between the matter and the form. Because 
of this, it is often convenient, as we have said, to write a Number in 
the form N = (W,F(N) ) ,  where W is the ordinal-matter and F(N) the 
form. The residue R(N) ,  is equal to W - F(N) .  

Given these conditions, how can  we  think the difference between 
two Numbers ? It is natural to posit that they are identical if they 
have the same matter and the same form. If  they are not identical, 
this could be: 

• because they do not have the same matter. Take WI the ordinal­
matter of one, and Wz the ordinal-matter of the other. Two ordinals 
l ike WI and Wz are ordered by belonging, but also, as we have seen 
(N7), by inclusion: either W I C Wz, or Wz C W I '  Thus we can say 
that in this case what differentiates WI from Wz is the set Wz - WI , 

or WI - W2• Since all elements of an ordinal are ordinals, we can also 
say that what differentiates WI  from Wz - and thus the numbers N I  
and N2, o f  which these ordinals are the matters - are the ordinals 
which are elements of W2 but not of WI ( i f  WI C W2 ) or elements of 
WI but not of W2 ( i f  Wz C Wd; 

• because, having the same matter, they do not have the same form. 
In this case, there are elements ( and therefore ordinals,  since the first 
matter of a Number is composed of ordinals in its three components, 
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matter, form and residue) that are in the form of one but not in the 
form of the other. But, s ince the matter is the same, every element of 
the form of one which is not in the form of the other is in its residue: 
if  W E F(N d and W E F(Nz ) ,  then W E R(Nz ) .  What d ifferentiates 
the two Numbers N t  and Nz is the set of ord inals that are in the form 
of one and in the residue of the other. 

We can see then that the di fference between two Numbers can be 
understood in terms of ordinals .  If an ordinal is in the matter of one 
and not in that of the other, or if it is in the form of one and in 
the residue of the other, it makes a difference between the two 
Numbers. 

1 3 .2 .  Take any two Numbers whatsoever. We wil l  say that an ordinal 
w discriminates between these two Numbers if it is  in the matter of 
one and not in that of the other, or if it is in the form of one and in 
the residue of the other (which implies that it is  in the matter of both, 
since form and residue are both parts of matter) .  

1 3 .3 .  Let 's  take an example: Let Nt be the Number (2 , (0 ) )  whose 
ordina l-matter is 2 and whose form is ( 0 ) .  It is certa inly a Number, 
since 2 is an ordinal (it is the finite ordinal whose being is (0 , (0 ) ) ,  see 
1 1 .5 ) and the s ingleton of 0, denoted by (0 ) ,  is a part of that ordinal 
( 7. 1 1 ) . This Number Nt has, for matter, the ordinal 2, and, for form, 
the part ( 0 ) .  

Now let N2 be  the Number (0), 2 ) .  Once again i t  is a Number, 
since 0) is an ordinal (the first l imit ordinal )  and the ordinal 2, 
which is an element of 0), is also a part of it ( transitiv ity of ordinals ) .  
This Number N2 has for its matter 0) and for its form the part 
(0 , ( 0 ) )  = 2 .  

The ordinal 0) does not  discriminate between the  Numbers N t  and 
Nz• Indeed, 0) is certa inly not in the matter of N t  (which is 2, a finite 
successor ordinal ) ,  but neither is it in the matter of N2, because this 
matter is 0), and we know that no set belongs to itself: it cannot be 
that 0) E 0). 

The ordinal 0 (the empty set ) does not discriminate between the 
Numbers N t  and Nz either. In fact, it is in the form of both. The 
form of N t  is the singleton ( 0 ) ,  of which 0 is the only element. So 0 
is an element of this form. And, on the other hand, 0 i s  an element 
of the ordinal 2, which is the form of Nz• Thus 0 i s  also in the form 
of N2 • 

However, the ordinal ( 0 )  (wh ich is the whole number 1 )  does 
discriminate between the Numbers N t  and Nz: ( 0 )  is an element of 
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the ordinal 2, and thus belongs to the form of Nz• But it cannot 
belong to the form of N" which is precisely ( 0 ) ,  since the self-belong­
ing (0) E (0) is impossible. Given that ( 0 )  is an element of the matter 
of N, (which is the ordinal 2) ,  s ince it is not in its form, it must be 
in its residue. 

13 .4.  Given two Numbers and any ordinal whatsoever, it is always 
possible to say whether th is ordinal  discriminates between the two 
Numbers or not. If N, and Nz are Numbers, the property 'discrimi­
nating between N, and N2' is well -defined. 

But if there is an ordinal that d iscriminates between N ,  and Nz 
(that is ,  if  N, and N2 are different ) ,  then in virtue of the principle of 
minimal ity - which we have constantly made use of because it is a 
fundamental law of natural multiples ( see 8 . 10 )  - there is one unique 
smallest ordinal which discriminates between them. Or, if you l ike, 
a minimal ordinal for the property 'discriminating between the 
Numbers N, and Nz' . 

13 .5 .  An extremely important definition:  The smallest ordinal to 
discriminate between two Numbers is called their discriminant. 

The interesting thing about the concept of discriminant is the fol­
lowing: it brings the idea of the difference between two Numbers 
down to a matter of one single ordinal. This 'minimal point' of 
differentiation a llows a local rather than global treatment of the 
comparison between two Numbers. The existence of a discriminant 
suffices for us to conclude that two Numbers are different. 

13 .6. One more example. Take the two Numbers N, and Nz from 
the example above ( 1 3 . 3 ) ,  N ,  = (2 , (0 ) )  and Nz = (00,2 ) .  What is their 
discriminant ? 

• We have seen that 0 does not discriminate between N ,  and Nz• 
• We have also seen that (0 )  discriminates between them. Since the 

only ordinal smaller than ( 0 )  is 0, which does not discriminate 
between N, and Nz, (0 )  is definitely the smal lest ordinal that 
discriminates between them. We therefore say that (0) is the dis­
criminant of the Numbers (2, (0 ) )  and (00,2 ) .  

Note the location of the discriminant: i t  i s  in the matter of the 
two Numbers N, and Nz, but is in the form of Nz and in the residue 
of N , .  

Now consider the fol lowing two Numbers ( S(W) denotes the 
successor of the ordinal W, see 9.5 ) :  
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• N3 = ( S (ro) ,ro) .  Its matter is the ordinal S(ro) ,  its form ro itself. The 
latter is a part of S (ro) ,  since every ordinal is an element of 
its successor, and every element of an ordinal is a part of it 
( transitivity) . 

• N4 = ( S ( S (ro) ) ,ro) . Its matter is the successor of the successor of ro, 
its form is roo 

What is the discriminant of N3 and N4 ? These two Numbers have 
the same form, that is ro, but extracted from different matters, S(ro) 
and S (S (ro) ) .  In summary, in these numhers everything is exactly the 
same up to the ordinal S(ro) .  This ordinal is in the matter of N4, since 
S (ro) E S (S (ro) ) ,  but it is not in the matter of N3, since S(ro) fl: S(ro) .  
Thus the ordinal S (ro) is the smal lest ordinal to make a difference 
between N3 and N4; it is the discriminant of these two Numbers. 

Note once again the location of the discriminant of N.J and N4: 
S(ro) is not in the matter of N3, but is in that of N4• Meanwhile, 
this time it is not in the form of N4, which is roo It is therefore in 
its residue. 

The comhination between the ordinal punctual ity of the 
discriminant and its location in the Numbers compared wil l give 
us the key to the concept of order in the boundless domain of 
Numbers . 

1 3 .7. Let's give al l  of this a s l ightly stricter form. 
The location of an ordinal w with regard to Number N, written 

L(w,N) ,  is the position that it occupies with regard to the three 
dimensions of the numerical section carried out by the Number N: 
matter, form, residue. There are obviously three locations: 

1 Either the ordinal w is not an element of the ordinal W which is 
the matter of the Number N. In this case we say that it is located 
'outside the matter' and we posit that: L (w,N) = oM(N) .  

2 Or the ordinal w is in the matter W and belongs to the form of 
the Number. We then posit L(w,N) = F(N) .  

3 Or the ordinal w is in the matter W, but belongs to the residue 
of the Number: We then posit L(w,N) = R(N) .  

When there is no ambiguity as to  the number N in question, we 
might simply use the notation L(w) = R, signifying that the location 
of w ( for the number in question, of course) is its belonging to the 
residue (of that number ) .  

Given a number N, every ordinal can be located for N so long as  
we a l low the location 'outside the matter' .  
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When an ordinal discriminates between two numbers N t  and N2 
(see 1 3 .2 ) ,  it is very simply because its location in the two Numbers 
is not the same. The table of possible locations for an ordinal W which 
discriminates between the two Numbers is as follows ( using oM, F 
and R to denote the locations ) :  

L (w,N t l  L ( w,Nz) 
F R 
F oM 
R F 
R oM 
oM F 
oM R 

The discriminant of N t  and N2, being the smal lest ordinal to dis­
criminate between them, necessarily responds to one of the 'pairs' of 
locations indicated in the table. For example, if it is in  the residue of 
Nt .  it must be in the form of Nz or outside the matter of N2, etc . 

13 .8 .  Definition of order over Numbers 
Take two Numbers Nt and N2 and their d iscriminant w ( i f  neces­
sary, reread 13.4-13.6, given that the concept of discriminant is 
centra l ) .  

We say that N t  is smaller than N2, written N t  < N2,  i f  the location 
of the d iscriminant w for the Numbers Nt and N2 satisfies one of the 
three following cases: 

1 Either L(w,N d = R(N d ,  and L(w,N2) = F(N2 ) :  the discriminant 
is in the residue of NJ and in the form of N2• 

2 Or L(w,N t l  = oM(N t l , and L(w,N2 ) = F(N2 ) :  the discriminant is 
outside the matter of NJ and in the form of N2 • 

3 Or L (w,N t l = R(N t l  and L(w,N2 ) = oM(N2 ) :  the discriminant is 
in the residue of NJ and outside the matter of N2 • 

Compare these three cases careful ly with what the table in 13 .7  
indicates a s  to  the possible locations o f  the d iscriminant of two 
Numbers. 

13 .9. It is not immediately evident that the relation Nt < N2 is one 
of order. But, even before establish ing that this is the case, we can 
reveal the characteristics of this relation. 
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The discriminant gathers into one point (one ordinal ) the concept 
of difference between two Numbers. The order introduced here 
depends on the location of this point, and therefore on a sort of 
topology of difference. Since, in the gesture of sectioning that consti­
tutes every Number N, the 'positive' numericality - that which this 
gesture extracts from matter - is the form, we wil l  always consider 
that, if the discriminant of two Numbers is in the form of one, this 
number is ' larger' than the other. In the other, of course, the discrimi­
nant wil l  either be in the residue or outside the matter. 

Conversely, the residue of a Number is the purely passive result of 
the section of its form, the un intentional remainder of the numeric 
gesture. It is  that which Number as gesture leaves to matter. If the 
discriminant of two Numbers is in the residue of one of them, we 
wil l  always consider this Number to be 'smal ler' than the other. 
In the other, the discriminant wi l l  be in the form, or outside the 
matter. 

1 3 . 10 .  An apparently paradoxical consequence of this conception, 
which determines all order on the basis of the active superiority 
of form - thought as the numerical ity of Number - over residue -
thought as passive inverse - is that a number N I is said to be smaller 
than Nz i f  their discriminant is in the residue of N I and outside the 
matter of N2 • The 'paradox' resu lts from the assumption that the 
position 'outside matter' is completely unaffected by the numerical 
gesture, being neither in its form nor in its residue. Isn't it even more 
passive then, even less involved in the numerical extraction of the 
form, than an ordinal which is in the residue, and which therefore at 
least figures in the matter of the Number? Isn't the location oM a 
figure of nothing in relation to Numher, an ontologically ' inferior' 
figure to the passive figure of the residue ? 

1 3 . 1 1 .  This sense of 'paradox' misses an essential point, which is 
that the 'outside matter ' position includes the matter itself, since an 
ordinal  W is not an element of itsel f. There is no reason to suppose 
that the matter is ' indifferent' to the gesture of Number: it is its 
primary 'given ' ,  that on the basis of which there is Number; the 
natural multiple whose being is exposed to the numerical section. 
And it is always the matter itself of one of the two Numbers that is 
at stake when the discriminant is located 'oM' for one of them. 

If  the discriminant of NI and Nz is , say, outside the matter of Nz, 
then it is in  the matter of N I (in its form, or in its residue) .  If not - if 
it were outside the matter of both Numbers - it could not discrimi­
nate between them. Therefore the discriminant must indeed be the 



DIFFERENCE AND ORDER OF NUMBERS 1 21 

smallest ordinal in the matter of N ,  and outside the matter of N2. 
Evidently this means that the ordinal WI which is the matter of N,  
is larger than the ordinal W2 which is the matter of N2 • If not, there 
could be no ordinal in W ,  that was not in Wz, since the elements of 
an ordinal are al l  the ordinals that precede it ( see 1 1 .2 ) .  Th is means 
that W2 E W, (the order-relation over the ordinals i s  belonging) .  But 
Wz itself is the smallest ordinal  that does not belong to Wz, since al l  
the ordinals smaller than Wz are,  precisely, the elements of Wz.  And 
so, ultimately, Wz is in W,  and is the smal lest ordinal not to be in 
Wz. It is the smallest ordinal to be in W,  ( the matter of N t l ,  and not 
in Wz (the matter of N2 ) ,  and therefore outside the matter of N2 . Wz, 
the matter of Nz, is the discriminant of NI and N2• 

This demonstration has a general validity: whenever we say that 
N, is 'smaller' than N2, or that N, < N2, because the discriminant of 
N, and N2 is in the residue of N, and outside the matter of N2, this 
also means that the discriminant in question is the ordinal-matter of 
N2• And this relation is legitimate because the matter of a Number, 
the one-ordinal in which the numerical section operates, is  a primor­
dial donation of being ontological ly superior to the passivity of the 
residue. 

It is therefore phi losophically well-founded to put the locations 
in the order R < oM < F: the form, affirmative numerical ity of the 
section, is superior to what is outside matter, which is itself superior 
to the passivity of the residue because in real ity this 'outside of 
matter' is the matter itself, integral ly counted for one as an ordinal .  

The relation N, < N2 founded on otlr three cases (the discriminant 
in R(N t l  and F(N2) ;  the discriminant in R (Nd and oM(N2 ) ;  the dis­
criminant in oM(Nd and in F(Nz ) )  describes a hierarchy, founded in 
the being of Number as the sectioning of a form in natural matter. 

13 . 12 .  What remains now is to establish that the relation N, < Nz is 
truly an order-relation, in the mathematical sense of the term : that it 
serialises Numbers. This  amounts to responding positively to three 
questions: 

1 Is the relation total? ' Or: given any two different Numbers N ,  
and Nz, i s  i t  a lways the case that N ,  < Nz o r  N2 < N t ? 

2 Is the relation non-reflexive? Or: is it impossible that N t  < N t ?  
3 Is the relation transitive? Or: from the relations N t  < N2 and 

Nz < N3 does it necessarily follow that N, < N3 ? 

If we prove these three points, we wil l  have brought the 
phi losophical legitimacy established in 1 3 . 1 1  to coincide with 
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mathematical (ontological )  legitimacy. Or, rather, with regard to the 
order of Numbers, we wil l  have obtained the situation in which we 
have been continuously striving to remain: where what is said under 
the sign of the phi losophical statement 'mathematics is ontology' 
remains in harmony with what is said under the s ign of mathematical 
inferences themselves. Or where the interpretation of mathematics as 
science of being qua being draws its contact with the real from the 
effective thoughts of such a science. 

1 3 . 1 3 .  The relation < is total 
Look one last time at the table of cases of inequality for N 1 < N2• 
This table fixes the location of the discriminant of Nl and N2 • 

Case 1 
Case 2 
Case 3 

R 
oM 
R 

F 
F 

oM 

To demonstrate that the relation is total is to show that, given two 
different Numbers, one of them is always 'smaller' than the other. 

Take two randomly selected numbers N3 and N4, and w, the 
ordinal  which is their d iscriminant. Three cases are possible: 

1 The discriminant w is in the residue of N3 . Then : 
( a )  either i t  is in the form of N4, and ( see the table) N3 < N4; 
( b )  or i t  is outside the matter of N4, and  ( idem) N3 < N4. 

2 The discriminant w is in the form of N3.  Then: 
( a )  either it is in the residue of N4, and  ( idem) N4 < N3; 
(b )  or i t  i s  outside the matter of N4, and ( idem ) N4 < N3. 

3 The discriminant is outside the matter of N3 . Then: 
( a )  either it is in the form of N4, and ( idem) N3 < N4; 
( b )  or i t  is in the residue of N4, and ( idem ) N4 < N3. 

Having exhaustively enumerated al l  the possible cases, we see that 
the relation < between Numbers N3 and N4 is always defined . The 
relation real ly is total in the domain of Num bers , there are no two 
different Numbers not related by <. 

1 3 . 1 4 .  It is good to get into the habit of thinking through the inequal­
ities between Numbers more rapidly. For example we could say: if 
the discriminant w is in the residue of one of the two Numbers, the 
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table (cases 1 and 3 ,  which are the only possibi l ities ) shows that this 
Number is smaller than the other. If w is in the form of one of the 
two Numbers, the table (cases 1 and 2, the only possibi l ities ) shows 
that this number is larger than the other. Apparently we have left to 
one side the case where w i s  outside the matter of one of the Numbers . 
Not so, because then it would necessarily be in the residue or the 
form of the other ( i f  it was outside the matter of both, it would not 
discriminate between them) ,  and we are referred back to one of the 
preceding cases . 

To compare two numbers according to the relation <, we therefore 
proceed as fol lows: firstly we check whether the discriminant is in 
the form of one of them: if so, we conclude immediately that this 
Number is the largest. I f  not, we check whether it is  in the residue 
of one of the two: if so, we conclude that that Number is the small­
est .  The work is done, no other case is possible. 

1 3 . 1 5 .  The relation < is irreflexive 
This point is trivial .  It cannot be that N 1 < N t .  since the relation is 
founded on the existence and location of a discriminant, which cannot 
exist 'between' N, and itself. 

1 3 . 16. To exercise ourselves in the comparison of Numbers using the 
< relation, let 's take up the examples from 1 3 .6 once more. We had, 
adopting the notation by the pair of matter and form, the four 
following Numbers: 

N, = (2 , ( 0 ) )  
N2 = (00,2) 
N3 = ( S (oo) ,oo) 
N4 = ( S ( S (oo) ) ,oo) 

The discriminant of N, and N2 is (0 ) .  It is in the residue of N "  
and i n  the form of N2. S o  N ,  < N2. 

The discriminant of N3 and N4 is S (oo) .  It is outside the matter of 
N3, and in the residue of N4. So N4 < N3. 

The discriminant of N3 and N, is (0) ,  which is in the res idue of N ,  
and i n  the form o f  N3. S o  N ,  < N3.  

The discriminant of N4 and N2 is 2 (why ? ) .  It is in the residue of 
N2 and in the form of N4. So N2 < N4. 

The reader can study the remaining comparisons on their own 
account. 

It will be remarked that it is not simply because the matter of a 
Number is ' larger' that that Number is larger. Thus N4 has for 
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ordinal-matter the successor of the successor of 00, which is larger 
than the successor of 00, the matter of N3 . Nevertheless, N4 < N� .  

What is sti l l  more remarkable in th i s  example is that the form of  
N3 and of N4 is the same ( it is (0).  Thus we have the  fol lowing 'law': 
if the form stays the same whilst  the matter grows, the Number gets 
smaller. It is quite stra ightforward to demonstrate the general 
case. Take a Number N I  (W"X) and a Number Nz (Wz,X),  where 
WI E Wz; and X the same set of ordinals (which is a common part 
of W I  and Wz) .  The discriminant of these two Numbers cannot be 
found in the form of either of them, since they have the same form, 
X: an element of X cannot discriminate between them (it even has a 
location for N I and Nz, namely the form) .  It is therefore in the residue 
of one, and outside the matter of the other. It is clear that this 
discriminant is none other than W I ,  which is the smallest ordinal not 
to belong to W I ,  and which is in Wz, since WI  E W2• Now WI is 
necessarily in the residue of Nz ( since it belongs to its matter, but not 
to X, its form) ,  and outside the matter of N I .  Therefore it is indeed 
the case that Nz < N I . 

This process suggests a comparison between the Number (W,X) 
and the relation �. We know that such a re lation diminishes when 
its denominator W grows. But be warned: this is only a distant 
analogy, because � means nothing here. 

All the same we can show, inspired by this analogy, that, if the 
matter remains the same whilst the form gets larger - so that the old 
form X is included in the new form x' - then the Number gets larger. 
This time, it is the enlargement of the 'numerator' that enlarges the 
'relation ' .  I leave the deta i ls of the demonstration of this to the reader. 
Suffice to say that the discriminant is the smal lest ordinal to belong 
to X' and not to X; so it is in the form of the second Number and 
in the residue of the first, and therefore the second is larger. 

These observations are phi losophically well-founded. What does 
it mean, in fact, to produce the same form from a larger matter? That 
the gesture of the numerical section did not manage to extract from 
a vast matter (that of a larger ordinal )  any more of a form than could 
have been obtained with a smaller matter. The gesture was thus less 
concentrated, less elegant, less effective. It is quite legitimate that the 
Number which marks this gesture should be held for inferior. The 
converse a lso follows: to obtain a more widely deployed form, con­
taining all the elements of the first and more, with the same initial 
matter, requires a more efficient gesture of sectioning. It is quite right 
that this should be marked by a superior Number. 

The relation < does indeed express in the mathematical field the 
ontologica l ly rational d ispositions of the comparison of Numbers. 
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1 3 . 1 7. The relation < is transitive 
This is a question of proving that, given three Numbers, N b  N2 and 
NJ, if N J  < N2 and N2 < N3, then NJ < NJ. Obviously everyth ing 
hinges on the location of the discriminants. We shall write the 
discriminant of NJ and N2 as w( 1 ,2 ) ,  that of N2 and NJ as w(2,3 ) ,  
and that of NJ  and NJ as w( 1 ,3 ) .  

( a )  First step. A n  ordinal smaller than w( 1 ,2 )  and w(2,3 ) does not 
discriminate between NJ and NJ. 

The discriminant of two Numbers is the smallest ordinal that dis­
criminates between those two Numbers ( in  the order of ordinals, 
which is belonging) .  

If an ordinal W is smaller than w( 1 ,2 ) ,  i t  doesn 't discriminate 
between Nl and N2 . Its location ( F,R, or oM) is the same in NJ and 
in N2. Equally, if  it is smaller than w(2,3 ) ,  it doesn't discriminate 
between N2 or NJ either - its location is the same in N2 and NJ. 
Ultimately, therefore, its location must be the same in Nb in N2 and 
in N3, and it does not d iscriminate between NJ and N3•  

( b) Conclusion of the first step: w( t ,3 ) ,  which obviously discri­
minates between N l and NJ, cannot be smaller than w( 1 ,2 )  
and w(2,3 ) .  I t  i s  therefore at  least equal to the smaller of the two. 

(c) Second step . The smal lest of the two ordinals w( 1 ,2 )  and w(2,3 ) 
discriminates between N J  and NJ.  

For convenience of exposition, we wi l l  suppose that the smal lest 
is w( 1 ,2 )  ( the reasoning would be exactly the same if it was w(2,3 ) ;  
confirming this would be  an  excellent exercise for the reader ) .  Since 
w( 1 ,2 )  discriminates between NJ and N2, its location in NJ is different 
from its location in N2 . But, since it is smaller than w(2,3 ) ,  it does 
not discriminate between N2 and N3, since w(2,3 ) - discriminant of 
N2 and N3 - is the smallest ordinal that discriminates between these 
two Numbers . Therefore the location of w( 1 ,2 )  in N2 and NJ is the 
same. Since its location in N2 differs from that in N b if it is the same 
in N3 as in N2, its location in NJ also differs from its location in N 1 • 
So w( 1 ,2 )  discriminates between N l  and NJ.  

(d) Third step.  w( 1 , 3 ) ,  the discriminant of N l and NJ, is actually 
equal to the smallest of the ordinals w(1 ,2) and w(2,3). 

We have seen that w( 1 ,3 )  must be at least equal to the smallest of 
the two ordinals w( 1 ,2 )  and w(2,3 ) (first step) .  We supposed w( 1 ,2 )  
to  be the smallest. Thus w( t ,3 )  i s  a t  least equal to  w( 1 ,2 ) .  Now w( 1 ,2) 
discriminates between N l and N3 ( second step ) .  S ince w( 1 ,3 )  is the 
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discriminant of N ,  and N3, and thus the smallest ordinal to discrimi­
nate between them, and since it cannot be smaller than w( l ,2 ) ,  which 
discriminates between N, and N2, it is equal to w(1 ,2) .  So w( l ,3 )  = 

w( l ,2 ) .  

( e )  An  aside: i f  we  were to  suppose the opposite hypothesis, that 
w(2,3 ) i s  smaller, we would find that w( l ,3 )  = w(2,3 ) ,  for the same 
reasons. 

( f) Fourth step, the conclusive step. We have discovered that w( l ,3 )  
= w( l ,2 ) .  This can b e  expressed a s  fol lows: w( 1 ,2 ) ,  discriminant of 
N, and N2, is also the discriminant of N, and N3. 

Now, we know that N, < N2. So we know there are two possible 
locations for the discriminant w( l ,2 )  in N" the smaller of the two 
Numbers: 

1 Either w( l ,2)  is in the residue of N t .  But then, since it is also the 
discriminant of Nt and N3, its position in the residue of N t  leads 
us to conclude that N t  < N3 (on this point, see 13 . 14 ) .  

2 Or w( l ,2 )  is outside the matter of N t .  It must then be in the form 
of N2, for the usual reason that N t  < N2. But w( l ,2 ) ,  which is 
smaller than w(2,3 ) ,  does not discriminate between N2 and N3. 
Therefore it is also in the form of N3 . And, since it is  the discrimi­
nant of N, and N3, being outside the matter of Nt and in the form 
of N3, once again N t  < N3. 

So we have proved that, if  Nt < N2 and N2 < N3, then N ,  < N3. 
We have even discovered, as a bonus, a stil l finer result: the discrimi­
nant of N t  and N3 is equal to the smallest of the discriminants of N t  
and N2, and o f  N2 and N3. 

1 3 . 18 .  Dia logue with a tenacious reader, on the subject of the preced­
ing demonstration : 

THE READER: You suppose from start to finish that the discriminant 
of N, and N3 exists .  It's not so obvious. I can well see that the dis­
criminant of Nt and N2 exists, s ince we know that N, < N2. The same 
for that of N2 and N3 . But it could wel l  be that in the end N, = NJ,  
and in that case there would be no discriminant w( l ,3 ) .  The relation 
would be circular: N t  < N2 < N , .  

ME:  But that's absurd: I f  the discriminant o f  N ,  and N2 i s  located in 
N ,  and N2 in such a way that N ,  < N2, it cannot be the case that 
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N2 < N , .  Therefore N ,  is necessarily different from N3, and their 
discriminant exists. 

READER: Okay, you've got me. But I'm sti l l not satisfied. In your 
second step, you suppose that one of the two discriminants 
w( 1 ,2 )  and w(2,3 ) is the smaller of the two. But surely it could quite 
easily be the case that there is no smal lest of the two; for this to be 
the case it suffices that they be equal. And, so that you don't try to 
pull the wool over my eyes, I ' l l  give an example. Take these three 
numbers : 

1 N,  is the number (2 , ( 1 ) ) ,  which has for its matter 2 and for its 
form the singleton of 1 .  I know ( I've read you saying so just now) 
that the ordinal 1 is an element of the ordinal 2 ( see 1 1 .5 ) ,  and 
that the singleton of an element is a part ( 7. 10 ) .  Here we have 
the pair of an ordinal and of a part of that ordinal, so it 's a 
Number ( 12 . 1 ) .  

2 N2 is the Number (0 ,0) ,  which has for matter the empty set, and 
for form the empty set. It's stil l a Number though ! Because 0 is 
an ordinal, which serves for the matter, and 0 is a universal part 
of every set ( see 7.9 ) ,  including 0 itself, which is, as I know, a set. 
So 0 is fine as the form too. 

3 N3 is the Number (2, 1 ) .  You can't refuse me this, because 2 is an 
ordinal, and 1 ,  being an element of the ordinal 2 ( fol lowing your 
1 1 .5 ,  as always ) ,  is also a part of it, since every ordinal is 
transitive. 

Now, let's see, what do I have ? The discriminant of N, and N2 is 
0: it's in the residue of N" since 0 is an element of the matter 2,  but 
does not figure in the form, the s ingleton ( 1 ) , whose only element is 
1. And it's outside the matter of N2, since this matter is 0, of which 
o cannot be an element. Therefore N, < Nz• 

The discriminant of N2 and N3 is also 0, which is outside the 
matter of N2, as we can see, and which is in the form of N3, s ince 
o E 1 .  From this we conclude that N2 < N3. 

Here is a concrete test case where N ,  < N2, where N2 < N3, and 
where, nevertheless, w( 1 ,2 )  and w(2,3 ) ,  to use your notation from 
the beginning of 1 3 . 1 7, are equal .  Therefore neither is smaller than 
the other, and your chain of inference is broken.  

ME:  Very shrewd ! You wi l l  have to a l low me al l  the same that in the 
end, in your example, transitivity is confirmed. Because the discrimi­
nant of N, and N3 is sti l l  0, which is in the residue of N, and in the 
form of N3 . So it is sti l l  the case that N, < N3. 
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READER: I make an objection on a point of principle, and you respond 
with an empirical remark ! My example ruins your general argument, 
which rests on the fact that one can always discern the smallest of 
the discriminants of N, and Nz and of N2 and N3 . I have shown you 
a case where this cannot be done. The fact that trans itivity sti l l works 
for my example might j ust be chance, since it now seems you have 
yet to prove anything. 

ME: You allow my first step, all the same: that w( 1 ,3 )  cannot be 
smal ler than w( 1 ,2 )  and w(2,3 ) ?  

READER: With the caveat that the 'and' seems somewhat suspect to 
me, since it might relate two equal discriminants. See my example: 
you would be saying that 'w( 1 ,3 )  cannot be smal ler than 0 and 0', 
which is ludicrous. 

ME: Unless it was smaller than 0 . . .  But anyhow - if, as in your 
example, w( 1 ,2 )  is equal to w(2,3 ) ,  do you admit that w( 1 ,3 )  cannot 
be smaller than w( 1 ,2 )  alias w(2,3 ) ?  Because no ordinal smaller than 
this common discriminant can discriminate between N" N2 and N3. 

READER: Obviously. 

ME: But w( 1 ,2 )  discriminates between N, and N2 - its location in N, 
isn't the same as in N2 ? 

READER: No; how could it be? 

M E: And it also discriminates (going by the name of w(2,3 ) ,  to which 
it is equal )  between N2 and N3 - its location is not the same in these 
two ? 

READER: That's exactly what I said. 

ME: Let's look at these locations more c losely. Since N, < N2, w( 1 ,2)  
must either be in the residue or outside the matter of N , .  But can it 
be outside the matter ? 

READER: (after some time thinking) No. Because, if it were outside 
the matter of N "  it would have to be in the form of Nz, s ince N, < 
Nz•  But, as it is also the discriminant of Nz and N3, and N2 < N3, it 
cannot be in the form of Nz, as explained in 13 . 14 .  So it is definitely 
in the residue of N ,  and . . .  



DIFFERENCE AND ORDER OF NUMBERS 1 29 

M E: • • •  outside the matter of N2, because not in its form. But where 
is it located in N3?  

READER: (after some time thinking) In the form. Because th i s  w( 1 ,2 ) ,  
which is also w(2,3 ) ,  i s  the discriminant of N2 and  N3 . Being outside 
the matter of N2, since N2 < N3, it is in the form of N3.  

ME: Perfect !  Here is a w( 1 ,2 )  which w( 1 ,3 )  cannot be less than, and 
which is found in the residue of Nt and in the form of N3 . Therefore 
it discriminates between Nt and N3.  That is to say . . .  

READER: Okay, I get it. Already identical to w(2,3 ) ,  it must also be 
identical to w( 1 ,3 ) . And this identity means that N t  < N3, s ince this 
common discriminant (of NI and N2, of N2 and N3, and of Nt and 
N3) is in the residue of Nt and in the form of N3 •  That works. 

ME: It's j ust as your example says: 0 was the common discriminant 
of the couples N t-N2 and NrN3. It is also the discriminant of N t  
and N3 . And it is located in the residue of N h outs ide the matter 
of N2, and in the form of N3. Which gives us the sequence: N t  < N2 
< N3• 

READER: You must admit that you've had to add quite a bit to your 
original account. 

ME: It is a subsection of the argument, the principle is the same. But 
in mathematics one cannot skip over anything, for the reason that 
one never knows what one is skipping over. 

13 . 19. Since the relation < is tota l ,  irreflexive and transitive, it real ly 
is an order-relation in the mathematical sense. We have entirely j usti­
fied our saying 'Nt is smaller than N2 ' when it is confirmed, by means 
of the location of the discriminant of N I and N2, that the relation 
Nt < N2 is valid. 

Thus the universe of Numbers - even if it is, as we shal l  see, 
borderless, saturated to an inexpressihle degree, of a density with 
regard to which the celebrated 'continuum' is th in and lacunary - can 
nevertheless be comprehended wholly under the serial law of an 
order. 

The additional fact that this order can be designated solely by the 
examination of the location of an ordinal ( the discriminant) with 
regard to three possible sites (F, R and oM) indicates a simplicity that 
is reassuring as to our capacity to think the universe of Numbers. 
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It is striking that, given its combination of a logic of minimality 
(the discriminant, the smallest ordinal to mark the difference of two 
Numbers ) and a logic of positions (the three components of the 
numerical section ) ,  this order appears to be al l ied with lexicographi­
cal order. In fact, it is presented as such in purely mathematical 
expos itions .2 

Now, lexicographical order, which organises words by recourse to 
an alphabet of the phonic or scriptural unities that compose them, 
touches on the d istinction, so important in Lacan, between the signi­
fier and the letter. 3 In real ity, Number is indeed l ike a signifier, whose 
internal  'positions' are the three locations - matter, form and residue 
- and whose letters are the ordinals. This alone permits us to organise 
something as anarchic as sets of any ordinals whatsoever, ordinal 
'words ' .  

If Number is the  medium in which Nature, grasped in its being, 
opens itself to our thought, this is, without doubt - as the order of 
Numbers testifies - because, in the section it carries out, we find, 
under the simple form of one and three, that dialectic of the position 
and of the letter which has been recognised, since Gali leo, as the true 
terrain of material ism. Nature consents to its profusion within the 
fiction of a writing system; and we must recogn ise in Number the 
most inscribed instance of being: 

two fingers 
snap in the abyss, in  
scribblebooks 
a world rushes up, this depends 
on you .4 



1 4  

The Concept of Su b- N u m ber 

14. 1 .  The concept of substructure, and even ( in category theory) I 
that of the sub-object, is fundamental for a l l  areas of contemporary 
mathematics . We know the extreme importance of the determination 
of subgroups of a group, subs paces of a topological space, etc . A 
good many of the most profound mathematical theorems of recent 
years are theorems of decomposition or of presentation: proving that 
a structure can be presented as a composition of ( possibly s impler) 
substructures, or that a structure is decomposable into a sequence of, 
or as a product of, pre-defined substructures. The elegance of thought 
reaches its highest point when one manages completely to ' resolve' a 
presented axiomatic structure into substructures that are of the same 
type, but simpler. Finite group theory offers some spectacularly 
accomplished examples of such resolution. 

The underlying idea is as follows: since the 'material ' of mathemat­
ics is the pure or undifferentiated multiple, structures are inevitably 
homogenous with structured sets . Mathematical ontology i s  unitary: 
there aren't, on the one hand, pre-given 'objects ', on the other, struc­
tural relations into which these objects enter. Everything can poten­
tially be reduced to a multiple without qual ity, made of the void 
alone. Given this fact, it is inevitable that the exercise of thought 
should consist in reducing complex multiplicities to simpler multi­
pl icities, through the medium of the axiomatic definition of simple 
and complex. The concept of structure organises this medium: it dis­
tinguishes elementary configurations from more intricate configura­
tions. Ultimately the strategic stakes of the thinking of being qua 
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being are to discern - given that every multiple is a multiple of mul­
tiples ( One having no being) - which multiples a presented multiple 
assures, in its turn, the presentation of. Whence theorems of decom­
position, resolution, or presentation. 

What a mathematician cal ls an 'object' is nothing but a multipl icity 
within which sub-multiplic ities are intricated, often in a very opaque 
fashion. The object is a packet of multiples, whose intrication is an 
obstacle to thought, and within which must be separated, as far as 
possible, the multiples-regions whose presentational combination is 
assured by the 'object' .  The 'objective' i l lusion, what we might call 
the phantasm of the object, relates to the initial distance between the 
entanglement of multiples and our separative access to this entangle­
ment through the medium of language. Concepts, axiomatically 
introduced, determine types of structures, which are the operators of 
separation and a l low us to exhibit such an 'object' as an articulation 
of substructures, indicating the latency of sub-multiplicities in their 
relation to the medium of language. 

That a structure can be resolved into substructures according to 
various operators of combination (embedded sequences of subgroups, 
finite or infinite products of compact spaces, etc . )  is the definitive 
mark,  in the inscribed strategy of thought, of the fact that what it 
confronts is being qua being, in the figure of an infinite entanglement 
of pure multiplic ities. A mathematician wil l  say that he has 'thought 
the object' (or 'understood the problem' )  when he has mapped the 
l inked immanence of the substructures whose presentative bond is 
deta ined, initial ly in an opaque fash ion, by the 'obj ect' .  So it is also 
a question of the decomposition of the object, a putting to death of 
the phantasm of the object, which is an object only in so far as it 
resists, through its constitutive entanglement, its resolution into the 
specific diversity of structures. Th inking hy means of substructures 
deposes the object and returns toward being. 

14.2.  In its commonly accepted usage, the concept of number is not 
a concept of the structural type. One doesn't speak of 'numerical 
structure' as one speaks of the structure of groups or of vector space. 
What is called 'number-theory ' today is an inconsistent set whose 
centre of gravity is in fact a certain area of algebra: ring theory and 
ideals theory. In particular, no concept of sub-number exists, since 
'number' doesn't designate a type of structure. 

Consequently, since the Greeks, the concept of number has been 
the principal redoubt of a real ist, even empiricist, vision of mathemat­
ics. Either number is taken for a 'given'  entity, or taken as proof that 
mathematical nominations have a strictly symbolic or operational 
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value. There is a c1osing-in-on-itsel f of the entity 'number', which 
is l inked to its purely algebraic manipulation. Certainly, numbers 
are combined according to algebraic rules. But it does not at 
all fol low from 7 + 5 = 12 (whether this statement be analytic or 
synthetic ) that 7 and 5 are 'substructures' of 12 .  The most tenacious 
illusion of objectivism resides in the conviction that 7, 5 and 12 are 
non-decomposable marks, whose serial engenderment assures their 
consistency. 

It would therefore be a great victory for an ontological vision of 
mathematics to establish the structural character of number, to 
unbind it from its empirical punctual ity, to extract it from the simple 
form of the object . This programme, which would make of the predi­
cate 'number' a reputable type of pure multiple, would find its most 
significant moment in the determination of the concept of sub-number. 
This concept would a l ign numerical ity with the great structural cat­
egories of mathematical thought (group, field, space . . .  ) ;  categories 
by means of which thought separates and unbinds the intrications 
of the pure multiple. 

14.3. The set-theoretica l  presentation of the concept of Number, 
such as we have worked it through above, authorises a strict defini­
t ion of the sub-Numbers of a given Number. Better sti l l :  as we shal l  
show step by step, a Number is defined in a univocal manner by 
its sub-Numbers . There exists a presentation of Number on the basis 
of the Numbers that are immanent to it. Thus Number in its turn 
admits of theorems of decomposition or of presentation. It is 
structuralised. 

14.4. The concept of sub-Number 
The general idea of the sub-Number is very simple: we obtain a sub­
Number of a given Number if we 'partition,2 this Number at a point 
of its matter and keep everything that comes ' before' this partition. 
Since the matter of a Number is an ordinal, a 'point' of partition is 
an element of this ordinal, and thus a smaller ordinal .  What there is 
'before the partition' is constituted by the ordinals smaller than the 
one that defines the partition . But the ordinals smaller than a given 
ordinal are precisely the e lements of that ordinal .  Consequently, if  w 
is the point of the partition, then what comes before it, being consti­
tuted by al l  the elements of w, is nothing other than w itsel f. By 
partitioning at point w we obta in a new ordinal-matter, which is w 
- a matter evidently more l imited than that from which it was cut. 

But, it will be asked, what happens to the form, the numerical 
section from the matter? Here, once again, the idea is very s imple:  as 
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the form of the new Number, we keep precisely those ordinals that 
are in the form of the partitioned Number and which are 'before' the 
partition. A sub-Number wi l l  truly be a segment of a Number, up to 
point w, reta ining up to w (that is, between 0 and w) al l  the charac­
teristics of the partitioned Number. 

Let's give al l  of this a more precise form. Take a Number 
N ,  = (W) ,F(N d )  and an ordinal w wh ich is an element of WI ( i .e. is 
in the matter of N d .  We partition N I at point w, retaining only 
ordinals that are lower than w, without changing the rest at all: the 
elements of the form of the new Number wil l  be those of F(N d that 
are lower than w. We thus make use of a property possessed by every 
set of ordinals (and therefore by the form of every Number) ( see N3) :  
because i t  i s  composed of ordinals, its e lements are ordered by  the 
relation E • It is  therefore entirely proper to speak of 'al l  the ordinals 
of F (Nd smaller than the ordinal w' .  The diagram (compare 12.4)  
shows this :  

W W1 

Number : •• --------�----�----------��--• * I 
I 
I 
I 

* Sub-Number : •• -------------.:----------------
w 

We write Elw for the segment up to point w of a set E of ordinals 
of which w is an element. Elw contains only elements of E lower than 
w ( but not w itself, please note ! ) .  The Number obtained by the parti­
tion of N I , and which, by extension of our notation, we will call N Ilw 
(which means that w must be in the matter W ,  of N ) ,  that w E Wd, 
wil l  have as its code: (w,F(N dlw) .  Its matter is w - the point at which 
it is  partitioned, an ordinal that comes ' before' W I - and its form is 
composed of al l  the ordinals in the form of N I which are smaller than 
w. By the same token, its residue is composed of all the ordinals 
smal ler than w which are in the residue of N I .  

We should note that this Number (w,F(N dlw) i s  exactly ' l ike' N I 
up to the ordinal w (exclusive) : in fact, up to w, any ordinal that is 
in  the form of N I is in the form of (w,F(Ndlw) too, and an ordinal 
that is in the residue of the former is also in the residue of the latter. 
The new Number obtained through partition is, in short, the ' initial 
segment' of N ) ,  an exact copy of the 'beginning' of N I . 

Take two Numbers N ,  and N2. If there exists an ordinal w such 
that NI = Niw, where N I partitions N2 at point w, then we say that 



THE CONCEPT OF SUB-NUMBER 1 3 5 

N ,  is a sub-Number of N2• Or, a lternatively: a sub-Number of N ,  is 
a segment N "w of N , .  

14.5 .  One sub-Number of N ,  - and one only - can be defined for 
every ordinal w in the matter of N , :  therefore for every element of 
WI ' There exist exactly W, sub-Numbers of N" s ince an ordinal 
'counts ' the ordinals that precede it. Generally speaking, a Number 
admits of as many sub-Numbers as there are ordinals in its matter. 

14.6. Take N ,lw, a sub-Number of N , . 1t is clear ( see the definitions 
and the diagram) that w is the discriminant of N "w and N" since, 
up to w, these two Numbers are identical .  Now, the matter of N "w 
is w. So w is outs ide the matter of N , lw. The order-relation between 
N, and its sub-Number N ,lw wil l  therefore depend entirely upon the 
location of the ordinal w in the Number N , :  whether w is in its form 
or in its residue. 

There are therefore two types of sub-Numbers for a given Number 
N , :  

1 Sub-Numbers N ,lw2 where W2 - which is at once their matter and 
the discriminant of themselves and N, - is in the form ofN1 • These 
sub-Numbers are smaller than the Number N, (the discriminant 
W2 is outside the matter of N "W2 and in the form of N , ) . 

2 Sub-Numbers N ,lw3 where W3 is in the residue of N , .  These sub­
Numbers are larger than the Number N, ( the discriminant W3 is 
in the residue of N, and outside the matter of N "W3 ) ' 

A sub-Number N "W2 of the first type wil l  be called a low sub­
Number. A sub-Number of the second type wil l  be cal led a high 
sub-Number. The fol lowing diagram shows a low sub-Number and 
a high sub-Number: 

W, 

Number N,  : • __ --�-..... , ... --�--_4,.--�*IIE--­

I 
I 

Sub-Number N,/w2: •• ---... -...... *WE�----.,;----:-------
(low) I 

W2 I 
I 

Sub-Number N , /wa: •• _-.......J ______ ... I------;*�-----
(high) 

Wa 
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Note that there are evidently as many lows as there are elements 
in the form of N I (W2 must be in the form) ,  and that there are as 
many h ighs as there are elements in the residue of N I (W3 must be in 
the residue) .  

The low set of Number N J ,  denoted by  Lo(Nd,  is the set o f  low 
sub-Numbers of N 1 • The symmetrica l case ( the set of high sub­
Numbers) is  denoted by Hi(Nd ,  to be read 'h igh set of Number 
N 1 ' .  

14 .7. The crucial point, then, is the following. Take a Number N, 
i ts  low set Lo(N)  and its  h igh set Hi (N) .  N is the one unique Number 
of minimal matter to be situated ' between'  the sets of Numbers which 
are its h igh and its low sets. 

This can be stated precisely as follows: 

1 N is situated 'between ' Lo(N)  and Hi (N)  in the sense that it is 
larger than al l  the Numbers of one and smaller than al l  the 
Numbers of the other. 

2 All the other Numbers situated between Lo(N)  and Hi (N) have a 
greater matter than those of N.  N is therefore the only Number 
of minimal matter to occupy the interval between its low set and 
its h igh set. Thus a Number N is a 'cut' between its low set and 
its high set, a cut defined 'up to matter, .3 The two sets of sub­
Numbers Lo(N)  and Hi (N)  define N itself by way of location 
( between the two) and material minimality. 

14 .8 .  The statement that N is between its h igh set and its low set is 
quite trivia l ,  s ince by definition al l  the low sub-Numbers are smaller 
than N and all the h igh sub-Numbers are larger than N. The problem 
is to establish that N is of minimal matter between the Numbers thus 
situated, and that it is the only one to have this matter. 

14 .9.  Principal lemma 
Take N J ,  a Number, and N2, another Number, smaller than N I  and 
of lesser matter than N I (so that N2 < NI and M(N2) < M(N 1 ) ) .  Then 
either N2 is a Number from the low set of N J ,  or there exists a 
Number from the low set of N I  s ituated between N2 and N 1 • 

Let w be the discriminant of N I and N2 . Since we suppose the 
matter of N2 to be lower than that of N J ,  and since N2 < N J , w is 
necessarily in the form of NI ( it cannot be in the residue of N2 and 
outside the matter of N J ,  because then it would be in the matter of 
N2 and outside the matter of N J, which possibi l ity is excluded by the 
fact that M (N2 ) < M(N d ) .  Consider the sub-Number N 1/w. Since w 
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is in the form of N "  it is a sub-Number from the low set of N ,  ( it is 
smal ler than N d .  

Up to, but excluding, w ,  N2 and N ,  are identical .  If the discrimi­
nant w is outside the matter of N2 and therefore equal to its matter, 
N2 is none other than the sub-Number N dw, and is therefore a sub­
Number from the low set of N , .  If w is in the residue of N2, then N2 
is smaller than the sub-Number N , Iw, because the d iscriminant of N2 
and Ndw is necessarily w - N2 being identical to N ,  up to the ordinal 
w (exclusive ) ,  and therefore also identical to N ,Iw, which is a parti­
tion at w of N" up to w (exclusive ) .  Now, w is outside the matter 
of N ,Iw, so we must suppose that it is in the residue of N2 . So N2 < 
Ndw. 

Thus it is " established that N2 is indeed either a Number from the 
low set of N, or smaller than a Number from the low set of N , .  

14. 10. An absolutely symmetrical chain o f  reasoning would prove 
that, if N ,  < N2 and N2 is of a lesser matter than N "  then either N2 
is a Number from the h igh set of N "  or else there exists a Number 
from the h igh set of N, situated between N, and N2. 

14. 1 1 .  Conclusion: for every number lower than (or, respectively, 
higher than ) N,  and of lesser matter than N" it is the case either that 
it is  a Number from the low set ( or, respectively, the high set) of N "  
or else that a Number from the low set ( or high set) can be interca­
lated between it and N , .  It is therefore impossible for any of these 
numbers to be situated 'between'  Lo(Nd and Hi (Nd  ( to be h igher 
than every element of Lo and lower than every element of Hi) whi lst 
at the same time being of lesser matter than N , .  The result is that N "  
which i s  indeed situated between its low set and its high set, i s  of 
minimal matter with regard to al l  Numbers thus situated. 

14.12 .  We will now demonstrate that NJ is the only Number of 
minimal matter situated between its low set and its high set. 

Suppose there existed another Number N2, situated between the 
low set and h igh set of N" and of the same matter as N , .  Such a 
Number could be represented as fol lows (with some abuse of our 
notation ) :  

Since N2 is of the same matter as N "  the discriminant w of N ,  and 
N2 is necessarily in the residue of N2 and in the form of N , .  This 
means that the sub-Number N dw is in the low set of N , .  Now this 
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sub-Number, N , lw, is manifestly larger than N2 (their discriminant, 
once again, is w, which is in the residue of N2 and outside the matter 
of N dw) . Thus it cannot be the case that N2 is larger than every 
Number in the low set of N I .  

H we had the arrangement: 

- we could demonstrate in the same way that there must exist a 
Number from the h igh set of N I which is smal ler than Nz (a  good 
exercise) . .  

It follows that N ,  real ly is the only Number of minimal matter to 
be situated between Lo(N d  and Hi (N d.  

N I  is identified, 'up to matter' - as the  un ique minimal element of  
that matter, once the 'between' position has been fixed - by the cut 
of two sets of Numbers, the low set and the h igh set. We shal l  write: 
N, = Lo(Nd/Hi (Nd .  We shal l  call the cut Lo (N d/Hi (Nd the canoni­
cal presentation of N I ' 

14. 1 3 .  A remarkable characteristic of the canonical representation 
of N I is that all the elements of Lo and of Hi are sub-Numbers of 
N I . Every number can be represented on the basis of Numbers 
deducted from lesser matters than their own. 

The canonica l presentation is a framing4 of Number from above 
and below, real ised by means of more tightly controlled sections than 
those carried out by Number. 

Every Number is a cut within sets of sub-Numbers, every Number 
operates at the l imit of two series of Numbers subordinate and imma­
nent to it . 

With this, the structural isation of the concept of Number is com­
plete. Not only can a Number be located as a section cut from natural 
multiplicities, but this section can itself be presented as a point of 
cutting between two series of sections of the same type. A Number 
is precisely thinkable as the hinge of its sub-Numbers . Number, so 
far from being a simple entity, answers to theorems of decomposition: 
it is  a structure local isable in thought as a point of articulation of its 
substructures . 

A Number exhibits, as a one-result, its immanent numerical 
determinations. 



1 5  

Cuts: The Fundamental 
Theorem 

15 . 1 .  And so, let us penetrate into the swarming of Numbers . 
A first remark, concerning what might be cal led the number of 

Numbers: this number is precisely not a Number, it is not even a 
consistent multiplicity. Numbers are numberless .  

In fact, given that a Number is the pair  of an ordinal and of a part 
of that ordinal, not only are there at least as many different Numbers 
as there are different ordinals, but there are many more, even if this 
'more' flickers beyond the frontiers of sense. For each ordinal, there 
are as many different Numbers as there are different parts of that 
ordinal :  if  W is an ordinal ,  serving as the matter of certain Numbers, 
there wil l  be p(W) (the set of parts of W) forms - each one virtual ly 
extractable by means of a numerical section from this matter. 

Now we already know that the ordinals do not constitute a set. 
'Al l '  the ordinals cannot be counted for one in a set-theoretical recol­
lection. In other words, the ordinals  form an inconsistent multipl icity .  
Consequently, the same goes for Numbers. 

But, what is more, for any given multiple whatsoever, we cannot 
know exactly what the quantity of the set of its parts is .  Certa inly, 
we know (Cantor's theorem) that it must be larger than that of the 
initial set: it is a lways the case that P(W) > W. But 'how much ' larger? 
It  has been proven ( by Godel and Cohen's theorems) that the amount 
of this excess is undecidable on the basis of the fundamental axioms 
of set theory. In fact it is coherent within these axioms to say that 
p(W) is ' immensely' larger than W; and it is also coherent to say that 
it is 'minimally' larger. ' 
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Ultimately, for every ordinal, there are a lways more possible 
Numbers for which it is the matter than there are elements of the 
ordinal itself. And, as things currently stand, the extent of this 'more' 
can only be decided. Which is to say that the number of Numbers is 
an inconsistency of inconsistencies. 

The simplest way to put it is to say: Number is coextensive with 
Being. It inconsists, is disseminated and profused just like the pure 
multiple, the general form of being qua being. 

1 5 .2 .  This inconsistent swarming of Numbers gives us to anticipate 
the difficulties that arise with regard to the identification of a specific 
Number picked ' from the crowd' . Every Number is cemented into 
the throng of those that pack in tightly, on its right (Numbers larger 
than it) and on its left ( smal ler Numbers ) .  No Number simply, 
uncomplicatedly succeeds any other. Every microzone of the numeri­
cal domain teems with a numberless horde of Numbers. The numeri­
cal topology is peculiarly dense. And this is the problem: is it possible 
to identify a Number as opposed to sets of Numbers ? Or must we 
consign ourselves, when we consider series of Numbers, infinite sets 
of Numbers, to being unable to attach to them, univocally, any spe­
cific Number? Does the numberless throng of Numbers necessarily 
lead us into 'those indefinite regions of the swell where all reality is 
dissolved' ?2 

This is where trans-numeric inconsistency summons us to think 
the cut. Is it possible, in a fabric so dense that nothing any longer 
numbers it, to cut at a specific point? Can one determine, by cutting, 
a singular Number? 

1 5 .3 .  This problem is not in the least bit  academic, nor is it relevant 
solely to the thinking of Number. We are told every day how 
'the complexity of modern society' prevents us from making any cut, 
any intervention. Contemporary conservatism no longer argues from 
the sacredness of the establ ished order, but from its density. Every 
local cut, it says, is rea l ly a 'tear in the social fabric ' .  Leave natural 
laws (the market, appetite, domination ) to operate - because it is 
impossible to interrupt them at any point. Every point is too depen­
dent on all the others to permit the precision of an interrupting 
cut. 

Thinking the cut in the hyper-dense, closely knitted fabric of 
Numbers will al low us to conclude that such arguments are falla­
cious. Every point separates dense sets of Numbers, every Number is 
the place of a cut, and, conversely, every cut prescribes one Number 
and one only .  Not ' indefinite regions ' ,  but 'a Constellation ' . 3 
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15 .4. Th is problem also has a complex phi losophical genealogy: that 
of the dia lectic between continuous magnitude and discrete magni­
tude . If the being of the continuum is grasped in its intimate coales­
cence, so that it is not constituted from distinguishable points, but 
rather from compl icated 'neighbourhoods ' ,  it must be thought as 
disjoint from discrete quantity, which enumerates successive marks.  
Up to, and including, Hegel ,  this opposition, which subsumes and 
underwrites that between geometry and arithmetic, remains in the 
position of an enigmatic rea l for the ph i losophy of quantity. In Kant, 
sti l l ,  it ultimately supports the duality of forms of sensibi l ity: Space 
is the transcendenta l figure of the continuous, Time - from which 
proceeds number - that of discrete succession. 

The most profound concept of the cut, a concept that plays an 
immense role in modern thought,4 displaces and refounds the dialecti­
cal schema which considers the couplet discrete/continuous to be the 
founding contradiction of the quantitative. This concept brings forth 
a singularity - and therefore a basis for distinction - in the fabric of 
the continuous, in the dense stuff of infinitely smal l  neighbourhoods. 
Overturning the customary order of thought, it shows how a certa in 
sort of interruption of the continuum defines a type of discreteness. 
Rather than saying that the continuum is composed of points, it 
determines points within the continuum, and even defines punctual ity 
on the basis of a cut in the continuum. The concept of cut substitutes, 
for a problematic of composition, a problematic of completion: a 
point comes to 'fi l l  in '  a j uncture, or an imperceptible lacuna, in a 
pre-given continuity. 

15 .5 .  Dedekind5 invented the concept of the cut in order to define 
irrational numbers. 

He begins with rational numbers. We know that a positive rational 
number is of the form .!!.. , p and q being natural whole numbers. The 
rational numbers provide our primary image of continuity owing to 
the fact that their order is dense. A dense order is an order such that 
between two ordered elements is always intercalated a third - and, 
by reiteration of this property, an infinity of elements . If we take the 
rational number 0 (which is rational because it can a lso be expressed 
as any fraction %) and the rational number t, then 0 < t. But the 
numbers t, t, t, etc. - and an infinity of numbers of the form .; -
intercalate themselves between 0 and t . 

Density does not directly express a quantitative property : the ratio­
nal numbers are an infinity of the type belonging to the countable, 
an infinity no greater than that of the natura l whole numbers, and 
the latter, being none other than the finite ordinals, do not present a 
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dense order: there is no natural whole number between n and n + 1 .  
Density is real ly a topological property of order: excluding the simple 
idea of 'another step' ,  of the well-determined follower of a term, it 
proposes instead a sort of general coalescence in which every term 
'sticks '  to an infinity of neighbours. The density of an order is a 
topological property, whereas succession is an a lgebraic property. 
Density is 'quasi-continuous' ,  one can approach a rational number 
as closely as one wishes through other rationals . One even gets the 
feeling that, between two rational  numbers and, more generally, 
between two terms of a dense order, there is no place for numbers, 
or terms, of another type, since the whole interval ,  no matter how 
small it is, is a lready populated with an infinity of rationals, or an 
infinity of terms of the dense order. 

Now, it is precisely in this quasi-continuity of rationals that 
Dedekind wil l ,  by means of the cut, define additional 'points' that 
will complete the apparently uncompletable density of the rationals 
and obtain a 'true' continuum, through interruptions in their 
quasi-continuity. 

We will return in greater deta il to this procedure in chapter 1 6 .  
But schematical ly: Dedekind considers disjoint sets o f  rational 
numbers RI and R2, for which every element of RI is less than every 
element of R2 and which, R2 having no rational internal maximum 
nor RI any rational internal minimum, are two 'open ' sets, one h igh , 
the other low. Dedekind then identifies a real number as occupying 
the place of a cut between RI and Rz• This real number will be both 
the upper l imit of R I  and the lower l imit of Rz• The density of the 
order of rationals plays an essential role in th is construction, once it 
is understood that dens ity and the cut, far from being exclusive, are 
paired together in thought. 

It must be noted straightaway that this procedure seeks to define 
real numbers, the rational numbers being supposed to be known. The 
Dedekind cut is wholly an operation of completion: where there is 
nothing, no rational number, the name of something 'extra ' comes 
forth. The rea l number defined by the cut R /R2 fills in that which, 
thought purely from the point of view of rationals, is a void in the 
density, and thus a void to which nothing attests . Th is is why the cut 
founds a new species of numbers, which 'complete' the initial density 
and retroactively indicate that this density was not so dense that gaps 
could not be discovered therein.  

1 5 .6. We cannot hope to 'complete' the inconsistent domain of 
Numbers, nor to found, outside Number, a hyper-number which 
would name the invisible lacunae in it. Our Numbers are uncomplet-
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able, being coextensive with Being ( see 1 5 . 1 ) .  All the Numbers are 
already there. What could a cut mean in such conditions?  

Nevertheless, there is a very strong concept of the cut for Numbers. 
This concept holds 'up to matter' ,  l ike that of the singular element 
separative of a Number and its sub-Numbers, of its identity as cut 
between its low set and its high set ( see chapter 14 ) .  

This concept of the cut i s  presented in the following theorem 
which, articulating the inconsistent swarming of Numbers with the 
precision and the unity of a punctual cut, well deserves the name of 
fundamental theorem of the ontology of Number: 

Given two sets of Numbers, denoted by B ( for 'from below' )  and 
A ( for 'from above ' ) ,  such that every Number of set B is smaller 
than every Number of set A (in the order of Numbers, of course ) ,  
there always exists one unique Number N of minimal matter 
situated 'between' B and A. ' S ituated between' means that N 
is larger than every element of B and smaller than every element 
of A. 

The Number N is evidently not the only one between B and A. 
The numerical swarming is such, the density is so considerable, that 
such a sol itude would be unthinkable. But it is the only number to 
be found with its matter. All the others have a larger matter, in a 
rigorous sense, since matters are ordinals :  the ordinal-matter of N is 
minimal for the property ' is the matter of a Number s ituated between 
the sets of Numbers B and A' .  

It wi l l  not surprise us at al l  to find minimality here: it is a c lassic 
organisational principle of ordinals .  What is surprising is :  

- that such a Number should exist; 
- that it should be unique. 

Its existence founds the principle of the cut. If two sets of Numbers 
are l ike B and A (every Number of B being smaller than every 
Number of A) ,  then one can stil l speak of what exists 'between'  B 
and A and is neither of B nor of A, in spite of the prodigious density 
of the order of Numbers. It is thus possible to make a cut in the 
hyper-dense fabric of this order. 

Uniqueness (up to matter, which is to say uniqueness of the 
Number-<:ut of minimal matter) founds the principle of identification, 
the persistence of the count-for-one even where al l  is coalescent, in 
dense neighborhoods . A cut designates one Number, and designates 
it on the basis of sets of Numbers. We will hold that no complexity, 
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even one pushed to the point of inconsistency, no density, even one 
pushed to the finest infinitesimal proximities, can authorise the pro­
h ibition against cutting at a point. 

1 5 .7. The rest of this chapter is dedicated to the demonstration of 
the fundamental theorem, the only theorem in this book that is a 
l ittle complex .6 

I do not, moreover, intend to give al l  the deta ils of the proof. 
However, we are at the heart of the mathematics of Number, and 
what must be put into play in order to th ink the cut is of a conceptual 
interest far surpassing mathematical ontology. All truth-procedures 
proceed via a cut, and here we have the abstract model of every 
strategy of cutting. The intel lectual effort demanded of the reader wil l 
lead him or her, I am quite sure, to beatitude in the Spinozist sense. 

1 5 .8 .  Upper bound of a set of Numbers 
Since we are engaged in investigations whose character is topological, 
and since in particular we are wondering how to find Numbers larger 
( or, respectively, smaller) than a given set of Numbers, let's begin 
with the simplest concept, that of an upper bound: given a set of 
Numbers, does it make sense to speak of a 'unique' Number larger 
that a l l  those in the set ? 

Once more we must, in view of the prol iferation of Numbers, avail 
ourselves of a concept 'up to matter' . We wil l  prove the following: 
if B is a set of Numbers, then there exists a Number N which is the 
unique Number of minimal matter to be larger than al l  the Numbers 
in set B. We wil l  cal l  this N the upper bound of B. Right away the 
upper bound exhibits a surprising characteristic: it is always a Number 
written (W,W) - that is, a Number whose form is its whole 
matter.7 

1 5 .9. Take B, a set of Numbers. Consider the ordinal defined as 
follows: 'the smallest ordinal W such that, for every Number N of 
set B, there exists a WI  E W which is either in the residue or outside 
the matter of N ' .  

One such ordinal W exists, because B is a set, and is therefore 
consistent. If W did not exist, that would mean that all ordinals 
would fal l  into the form of at least one Number N of B. But 'al l  
ordinals '  is an inconsistent multiplic ity, and consequently B would 
also be an inconsistent multiplicity, and would not be able to be 
thought as a set. 

That there should exist such a 'smallest' W results from the prop­
erty of minimality that characterises the ordinals .  
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W having been specified, now consider the Number (W,W) .  This 
number is larger than every Number in set B. In fact, by the definition 
of W, for every Number N of B there exists a WI E W which is in its 
residue or outside its matter. Now, as the form of (W,W) is W, every 
WI E W is in the form of (W,W) .  The d iscriminant of a Number N 
and of (W,W) is necessarily the smallest W I  E W that is in the residue 
or outside the matter of N. And, since this WI is in the form of (W,W),  
the residue (or outside-matter )/form relation demands that (W,W) 
should be larger than N. 

Since a Number larger than every Number in B exists - namely 
(W,W) - one of minimal matter must exist, in virtue of the ordinals '  
property of minimality. 

Therefore, let (WI ,X )  be a Number of minimal matter for the 
property 'being the matter of a Number larger than al l  the Numbers 
in B'. Its form X is in fact equal to WI . 

For, if X differed from WI - if, that is, the form of the Number 
was not its whole matter - that would mean that there existed at least 
one ordinal W2 E W which was in the residue. Consider then the 
sub-Number of (WI ,X) obtained by partition at W2 - that is, the sub­
Number (WZ,X/W2 ) .  Since Wz is in the residue of (W"X) ,  the sub­
Number (WZ,X/W2) is in the h igh set of (W I ,X)  ( see 14 .7 ) .  It is there­
fore larger than (W I ,X) ,  and a fortiori larger than every Number in 
B, since this is already the case for (W"X) .  

But that is impossible, because the number ( WZ,X/W2 ) is of lesser 
matter than the Number ( W I 'X ) .  Now, we supposed that (WI ,X) 
was of minimal matter for Numbers higher than every number 
in B. 

Our initial hypothesis must be rejected: there does not exist in 
( W I ,X)  any element that is in the residue, which is to say that the 
form occupies the whole matter, and that the Number must be 
written (W"Wd.  

There exists therefore one Number only of  minimal matter that i s  
higher than a l l  the Numbers of set B: i t  is  the Number (W"Wd,  where 
W I is this minimal matter. 

We can thus legitimately speak of the upper bound of a set of 
Numbers . Already the theme of unicity comes to inscri be itself as bar, 
or caesura, in the hyper-dense swarming of Numbers. 

1 5 . 10. Lower bound of a set of Numbers 
Reasoning tota lly symmetrical with that employed for the upper 
bound will permit us to define the unique Number of minimal matter 
that is smaller than a set A of Numbers . This wil l  be the lower bound 
of the set A. We will see that, this time, this Number is written (W2,O ) :  
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its form is void, the numerical section does not extract anything from 
the matter Wz.8 

Let A be a set of Numbers , and let W be the ordinal defined thus: 
'the smallest ordinal such that, for every Number N of A, there exists 
a WI E W which is either in the form, or outside the matter of N' .  
This  ordinal exists necessarily, because A is a set, and in virtue of the 
principle of minimality ( see above ) .  

The Number (W,O) ,  whose matter is W and whose form i s  the 
void, is smal ler than every Number of A. In fact, a l l  ordinals WI E 

W are in the residue of (W,O ) .  Now, for every Number N of A, by 
the definition of W, there exists a WI E W which is either in the 
form of N, or outs ide the matter of N. The smallest such WI is the 
discriminant of N and of (W,O) ,  and its location means that (W,O) 
< N. 

Hence there exists a Number smaller than every Number in A, and 
- by the principle of minimality - there exists at least one of min imal 
matter, say (W2,X) .  

I t  is easy to  prove that X is necessarily the empty set. If it were 
not, that would mean that there existed a W3 E W 2 which was in 
the form of (Wz,X) .  But then the sub-Number of (Wz,X) obtained 
by partition at W3, that is, ( W3 ,Xlw3 ) ,  would be in the low set of 
(Wz,X) ( see 14 .7 ) .  It would then be smaller than (Wz,X ), and therefore 
smaller than every Number in A, although of lesser matter than 
(Wz,X) :  which is impossible in view of the minimality of Wz for this 
position. 

Therefore, there exists one unique Number of minimal matter that 
is smaller than every Number in A. It is the Number (Wz,O) ,  where 
W2 is this minimal matter. The Number (W2,0) is the lower bound 
(up to matter) of set A. 

1 5 . 1 1 .  Fundamental theorem, first part: Existence 
'Existence' means here: existence of at least one Number s ituated 
between two sets of Numbers B and A, which, in an abuse of our 
usual notation, we shal l  genera l ly write as B < N < A. 

Take B and A, two sets of Numbers such that every Number of B 
is smaller than every Number of A. Our technique wil l  consist in 
constructing, between B and A, step by step - that is to say, ordinal 
by ordinal  - starting from 0, a Number N 'suspended' at every step 
in such a way as to assure us that noth ing up to the ordinal W in 
question, which is to say, for every step taken in the procedure - can 
force the Number N to be smaller than a Number of B, or larger than 
a Number of A. We might also say that we are going to construct 
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N from its sub-Numbers of intersecting matter, by 'choosing' to put 
an ordinal W in the form or in the residue of the Number N under 
construction, depending on the relationship  between the segment of 
the procedure of N which goes from ° to W, and the various sub­
Numbers in B and in A. 

The underlying idea is that the construction of a cut makes nec­
essary a local domination of the substructures impl icated in the 
course of this construction. This is a general law of practice, at 
least in so far as the latter a ims at effects of cutting ( foundational 
interruptions ) .  

This technique boasts the very great interest of h ighl ighting the 
l ink between cutting and a sort of procedure of neutralisation. So 
that N can sl ide in between the Numbers of B and the Numbers of 
A, we are going to remain mindful of the fact that the principle of 
order, at every point of N, 'neutralises' the discrimination between 
the Numbers of B and the Numbers of A. The great difficulty being 
to know when to stop ourselves, when to fix the matter of the 
Number N, which we would have traversed, all the while postponing 
its closure. 

In all domains of thought, to proceed with a precise cut in a 
densely ordered fabric is to calculate a prudent tactics of inser­
tion step by step, and then to risk a stopping point which wil l  
irreversibly fix the intermediary term. The cut thus combines the 
neutrality of the interval and the abruptness of the interruption . 
This is why great strategies of thought must always atta in a 
mastery both of the patience which, point by point, opens and 
enlarges a lacuna, and of the impatience which comes to seal and to 
name its existence from this moment forward, without return or 
recourse. 

15 . 12 .  So we begin from the ordinal 0, and we traverse the ordinals, 
assigning to each a value f(W) - the values being F ( for form) ,  R ( for 
residue) ,  or M ( for matter) .  The value M can obviously on ly be given 
once, and last of al l ,  because the Number N that we want to construct 
has only one matter. For an ordinal W, i f  f(W) = F, we wil l  put W in 
the form of the Number N under construction; if f(W) = R, we wil l  
put it in the residue. So long as we have not assigned the value M, 
the sub-Numbers are sti l l  'under construction' .  The procedure 
amounts to fixing a location-status for each ordinal W, so that the 
sub-Number NIW, as the procedure continues, wi l l  appear retroac­
tively as never constra ining N to be larger than any Number of A, 
or smaller than any Number of B. 
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The strategic patience of the construction of a cut consists in insert­
ing additional local values without compromising the chances of a 
global cut. It is a work that proceeds point by point, but is retroac­
tively decided as an irreversible and general caesura. 

We will denote by Nb and Na, with indices if need be, the Numbers 
of B and A. Ni wil l  designate the interval lic Number, the Number we 
wish to construct between B and A. 

If, for a given Number Nb (or respectively Na) ,  the values attrib­
uted by f to ordinals smaller than an ordinal W (values of the type 
F or R, which the ordinals of the Ni under construction take) are 
exactly those which locate these ordinals in Nb (or respectively in 
Na) ,  then we say that W identifies Ni and Nb (or respectively Na) .  
W's identifying Nb (or Na) and Ni means that, in every case, no 
ordinal smal ler than W can d iscriminate between Nb (or  Na)  and Ni. 
In particular, the discriminant of Nb, or Na, and the segment of Ni 
under construction (a segment which ranges from 0 to W exclusive ) 
cannot figure in the ordinals inferior to W. Which amounts to saying 
- and this is the most tractable form of the relation of identification 
at ordinal point W - that, up to W, the 'sub-Number' Ni/W is identi­
cal to the sub-Number Nb/W ( respectively Na/W) .  

We wi l l  denote by  Id. (W,Nb) the fact that W identifies Ni and  Nb. 
And the same thing for Na. All the while we should keep in mind 
that Id. (W,Nb) means that Ni/w = Nb/W. 

The strategic idea is to construct an Ni 'neutral ised' for order, by 
mak ing sure, each time one comes to 'the end' of a series of ordinals 
which identify Nb (or respectively Na) and the Ni under construction, 
that the choice of a value for f(W) will not be able to compromise 
our chances of positing a hypothetical ly completed Ni, which would 
be interval l ic between B and A. We must j ust make sure that no 
ordinal comes to be in the position of an unfavourable d iscriminant 
forcing Ni to be smaller than a Number of B, or larger than one of 
A. The prudence of the cut cons ists here in never risking losing the 
chance to take up an interval l ic position. Conserve its chances, that 
is the maxim of the 'step by step' phase of the construction of 
a cut. 

1 5 . 1 3 . We will posit the following rules - rules of construction of Ni 
for the ordinals starting from 0: 

R ULE 1 :  I f  Id . (W,Nb) and W is the matter of Nb, then f(W) = F. 
We put the ordinal W in the form of Ni whenever, at the end of 
an Nb/W identical to Ni/w, W is the matter of Nb. So, using a 
black square to denote a belonging to the form: 



Nb -1:: 

Ni "'" 

NblW 
� 

Id!m 

NilW 
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.. 
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R ULE 2 :  If Id. (W,Na) and W is the matter of Na, then f(W) = R. 
The diagram should be clear, marking with I a belonging to the 
residue: 

Ni � NilW vW .. 
--t.i ... 

....... 
Id!,m 

Na � .... 
NalW � 

R ULE 3 :  If rules 1 and 2 do not apply for a given W, but instead 
we have an Nb such that Id. (W,Nb) with W in the form of Nb, 
then f(W) = F. If cases 1 and 2 do not apply,  we put W in the form 
of Ni each time that, at the end of an NblW identical to NilW, 
W is in the form of Nb: 

Nb-e----------------.-----------------------------

Ni ___ --------------__ ----------------------------��. 
W 

R ULE 4: If rules 1 and 2 do not apply, and we have an Na such 
that Id. (W,Na) with W in the residue of Na, then f(W) = R: 

N ° - V 
' - � .. 

Id;m 

Na !. l/ .. 
/ W 

r' 
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R ULE 5: If none of the first four rules apply, it must be the 
case that, for the W considered, no Nb such that Id, (W,Nb) has 
W for matter or in its form, and that no Na such that Id , (W,Na) 
has W for matter or in its residue. Under such conditions, at 
point W, i f  there exists an Nb for which Id.(W,Nb), W is in 
the res idue of Nb, and if it is the case that Id. (W,Na ) ,  W is in 
the form of Na. We then say that f(W) = M, which completes 
the construction of Ni. 

As ju stification for this rule, note the fol lowing: since al l  Nb (or 
respectively Na) where W is not thus located - so, W in the residue 
(or respectively in the form) - are such that W does not identify 
them with Ni, then, for these Nb (or Na) ,  it is the case that NbfW ...;:. 
NifW (or respectively NafW ...;:. NifW) .  In other words, these Nb and 
these Na have already been discriminated, before ordinal W, by the 
process Ni. The only Nb and Na not to have already been discrimi­
nated are those where W i s  in the residue (or respectively in the 
form) .  

Given this remark, we  can  state that rule 5 prescribes witb com­
plete justification tbe decision of closure of the process Ni. We can 
posit: f(W) = M, thereby fixing W as the ordinal-matter of Ni, and 
therefore as that place where the process of the construction of Ni 
ends. 

If W is the matter of Ni, it is located outside the matter for that 
Ni supposed closed in W. Now, W does not discriminate Ni from 
Nb where W is in the residue, or from Na where W is in the form. 
The location for Ni will remain ' between' B and A, s ince the schema 
of the order-relation is precisely R < oM < F. We will have: 

Nb - / 
":: � 

Ni . Id�m ... 

..... �, 
- ... 

Na .!: 
W 

Closure is enti rely possible, s ince, beyond ordinal W, all Nb and 
Na are discriminated by Ni (before W through rules 1 to 4, at point 
W by rule 5 ) ;  and our rules reflect the fact that this discrimination 
always goes in the direction Nb < Ni < Na. 

This regulation, however, merits immediate examination. 
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15 . 14.  It is essential to confirm that our rules do not contradict one 
another. 

Take for example rules 1 and 2. If by some mischance it should 
happen that at the same time Id. (W,Nb) and Id. (W,Na) ,  with W the 
matter both of Nb and of Na, then W would have to be placed 
simultaneously in the form and in the residue of Ni . . .  

But such a case cannot arise. Because, if W is  the matter of Nb 
and of Na, s ince every Number of B is smaller than every Number 
of A, it is the case that Nb < Na. And, since they have the same matter 
W, their d iscriminant must be less than W, wh ich is to say that there 
is at least one ordinal WI  E W which doesn't have the same location 
in Nb and in Na. It is therefore not possible for sub-Numbers NblW 
and NalW to be identical . This means, moreover, that, if both 
Id. (W,Nb) and Id. (W,Ba ) ,  their common identity must be NilW. So 
rules 1 and 2 are compatible. 

But take rules 3 and 4. If by some mischance there is a W for which 
rules 1 and 2 do not apply, and there exist Nb and Na for which, 
firstly, Id.(W,Nb) and Id. (W,Na) ,  and, secondly, W is in the form of 
Nb and W is in the residue of Na, W would have to be placed both 
in the form and in the residue of Ni. 

But of course such an unfortunate circumstance cannot arise. 
Because, if W is in the residue of Na and in the form of Nb, then it 
discriminates between Nb and Na. But this could not be thei r dis­
criminant, otherwise it would be the case, with regard to this loca­
tion, that Na < Nb, which is proh ibited by B < A. Therefore the 
discriminant is smaller than W, and, as before, it is impossible that 
NblW = NalW; which makes it necessary to suppose their common 
equal ity to NilW. 

15 . 15 .  Now we wil l  see whether, with these rules, we do indeed 
preserve our chances that Ni wil l  s l ip in between all the Numbers 
of B and all the Numbers of A, and therefore between all Nb and 
al l Na. 

When we apply rule 1 ,  we give the value F to the ordinal  W. This 
certainly cannot make Ni become less than a Number of B, because, 
if W is the discriminant of Ni and of an Nb, being in the form of Ni, 
it wil l always be the case that Nb < Ni. 

But, given the fact that we put W in its form, don't we risk Ni 
becoming larger than a Number of A? For this it would have to be 
the case that W was the discriminant of Ni and of an Na. But then 
it would also ultimately be the discriminant of the Nb of which W 
is the matter (s ince we apply rule 1 )  and of Na. Now, we know that 
Nb < Na. If their discriminant is the matter of Nb, it must be in the 
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form of Na. This location of W - W being the discriminant of Ni 
and Na - proh ibits us from having the order Na < Ni. 

So, in apply ing rule 1, we can be sure that the location that we fix 
for W in the Number Ni under construction entails neither an unwel­
come and frustrating Ni < Nb, nor a fatal Na < Ni . At point W, Ni 
stays situated ' between' B and A. 

The examination of the other rules leads us to the same conclusion. 
Let's carry out this examination for rule 5 ( for rules 2, 3 and 4 the 
methods are the same as for rule 1. Let the reader prove this as an 
exercise, with the help of the note,9 and above al l  of the d iagram 
below. ) 

Rule 5 comes into play when rules 1 to 4 are not applicable. The 
W under consideration makes no identification between any Nb (or 
Na) and Ni if W is located as matter of Nb ( rule 1 ) , matter of Na 
( rule 2) ,  form of Nb ( rule 3 )  or residue of Na ( rule 4 ) .  If, then, it is 
the case that Id. (W,Nb),  or Id. (W,Na) ,  it is because W is in the residue 
of Nb and/or in the form of Na. These two hypotheses are compatible 
this time: the identifications in question could obtain, and W could 
be both in  the residue of Nb and in the form of Na. Rule 5 then 
compels us to make the gesture of closure f(W) = M, which deter­
mines W as matter of the interval l ic Number Ni. In the Ni thus 
closed, W is located outside the matter. Can this choice make Ni less 
than some Na, according to the relation R < oM? No, because, i f  W 
discriminates between this Na and Ni, with W in the residue of Na, 
this would be a case for the application of rule 4, which would 
exclude the use of rule 5. And, in the same way, it cannot be the case 
that Ni < Nb according to the relation oM < F, because the location 
of the discriminant W in the form of an Nb compels, for W, the use 
of rule 3 rather than rule 5. Rule 5 , applied when it is proper to do 
so, cannot entail that Ni < Nb. And, as it cannot entai l  Na < Ni 
either, it leaves the procedure Ni, at point W, in the interval between 
B and A.  

So it is that, at every ord inal point W, the application of our rules 
' locally' situates Ni, in the form of the sub-Numbers NilW, in an 
interval l ic position with regard to B and A. Our step-by-step labour 
is pursued without Ni surpassing any Na, or being surpassed by any 
Nb. We conserve our chances al l  the way through the construction. 
An enlarged diagram shows how Ni proceeds . We have, above, some 
Numbers Nb of B, below, some Numbers Na of A, and, in the middle, 
the process of Ni. The ordinals WI to Ws present, in order, cases of 
the application of the five rules. Squares, asterisks and bars designate 
form, matter and residue. You wil l  recal l  that, when a point is marked 
in an Nb or an Na, it means that, before that ordinal point, Na (or 
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Nb) is identical to Ni ( relation of identification at an ordinal 
point ) .  

o 

Ni --' 

A{ 

w, 

V 
/ 

1/ 1/ 
/ / , 

�. 
� 

V 
/ 

rule 1 rule 2 rule 3 rule 4 rule 5 .. .. ..  � 

Rb, 

Rb2 

Rb3 

.. 
.. 

Ra, 

Ra2 

Ra3 

if fules 1 and 2 do not apply if fules 1 and 4 do not apply 

The whole subtlety of the enterprise l ies in minimising the risks, 
in making sure not to increase the value of Ni to point W ( in particu­
lar,  in not giving it value F) unti l  one is sure that this increase wi l l  
have no effect with regard to A; and in not decreasing this value (the 
value R)  unless all effect with regard to B is excluded. Thus Ni, per­
petually maximising the neutralisation of the effects of order, s l ips 
in between B and A. 

And, when the time for closure arrives ( rule 5 ) ,  for a W situated 
between residue (Nb) and form (Na) ,  we retroactively set the seal on 
the tactics, arriving at a Number globally situated between B and A, 
because it is protected, locally, from any prohibition against this 
possibi l ity. 

15 . 16 .  Fundamental theorem, second part: Unicity 
We have just indicated the strategy - combining local,  neutra lis ing 
patience with a global decision of closure - that al lows the existence 
to be establ ished, in every case, of at least one Number situated 
between two sets of Numbers B and A such that ( in  an abuse 
of notation ) B < A. In virtue of the principle of minimality of 
ordinals, there must exist at least one such Number of minimal 
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matter: we wiI I  consider the property 'being the matter of a Number 
situated between B and A', and the minimal ordinal for this 
property. 

It remains to be shown that a Number of minimal matter s ituated 
between B and A is unique, which wil l permit us to identify the 
numerical cut between B and A. 

Suppose that there were two: we would have the following 
arrangement: 

- with N 1 and Nz being of the same matter (minimal for this 
location ) .  

Since N l  and Nz  are of  the same matter, N l < Nz means that the 
discriminant must be in the residue of Nl and in the form of N1• Take 
this discriminant, w. Consider the sub-Number N 1/w of N 1 • Since w 
is in the residue of N h this sub-Number belongs to the h igh set of 
N 1 :  it is therefore larger than N 1 •  But, since w is the discriminant of 
N I and Nz, and therefore the smallest ordinal to discriminate between 
them, then N l and Nz are identical up to w (exclusive ) .  This means 
that the sub-Number N dw is identical to the sub-Number Nz/w. The 
discriminant of N dw and of Nz can only be w, which is outside the 
matter of N 1/w and in the form of N2 • Consequently, N 1/w < Nz. 

So final ly, we have the arrangement: 

Which is to say that N dw is also situated between B and A. But this 
is impossible, given that it is of lesser matter than that of N J , which 
is supposedly minimal for the location between B and A. 

We must reject our initial hypothesis : there are not two Numbers 
of minimal matter between B and A, there is only one. 

The two sets B and A therefore determine univocally one Number 
of minimal matter situated between them. This Number wil l  be cal led 
the cut of B and A, and we wil l  posit that N = B/ A, each time that 
N can be identified as the unique cut of B and of A. 

1 5 . 1 7. There is one very pecul iar case of the cut: take two Numbers 
N 1 and Nz such that N 1 < Nz• And take, for B and A, the sets which 
have for elements only N I and only Nz, that is, the singletons (N d 

and (Nz ) .  We remain within the parameters of the fundamental 
theorem, which i s  to say that there exists a unique Number N3 of 
minimal matter situated between N l and Nz• We thus rediscover here 
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the classic condition of density of an order, which we have mentioned 
with regard to the rationals :  between two Numbers there a lways 
exists a third, and thus an infinity of Numbers . For us, besides this, 
there is an additional determination: between N I and N2 there is 
always a unique Number of minimal matter. 

We can therefore put forward a principle which everyth ing gives 
us to expect, and of which the unicity of the cut provides the infinitely 
strong concept: the order of Numbers is dense. 

But more profound than this is the correlation in thought between 
this numberless density, this coalescence which inconsists in the 
approach to all Number, and the possibi l ity of counting for one the 
Number of minimal matter which cuts the fabric without lacuna of 
numerical ity at a certa in point. 

'Cut' here designates the incision of thought in the inconsistent 
fabric of being, that which Number sections from the ground of 
Nature. It is a concept of singularity. Perhaps the concept of s ingular­
ity, at least in the order of being. For there is that other s ingularity 
which cuts across being, and which is the event. 



1 6  

The Numberless Enchantment 
of the Place of Number 

1 6. 1 .  A review, to begin with . 

1 A Number is an ordinal - the matter of the Number, M(N) ,  in 
which is sectioned a part of that ordina l - the form of the Number, 
F (N) .  We also cons ider that part of the ordinal-matter that falls 
outs ide the section, outside the form: the residue of the Number, 
R (N) .  

2 The location of an ordinal with regard to a Number N is its posi­
tion in ( belonging or non-belonging to ) one of the three 'compo­
nents' of Number: form, residue, matter. There are three locations: 
in the form, in the residue and outside the matter. 

3 The discriminant of two Numbers Nt and N2 is the smal lest 
ordinal  not to be located similarly in both Numbers . If no 
such discriminant exists, then the two Numbers are equal ( they 
have the same matter, the same form, and therefore the same 
residue ) .  

4 Depending on the location of the discriminant, we can define an 
order-relation (transitive and non-reflexive) between two different 
Numbers. We denote this through N t  < N2 and by saying that N t  
i s  smaller than Nz • This relation is a total order over the domain 
of Num bers in the sense that, given two different numbers Nt and 
N2, it is always the case either that Nt < N2 or N2 < N t .  

5 The order-relation is dense: given two Numbers N t  and Nz where 
N t  < N2, there a lways exists an N3 which comes in between N t  
and N2 : N t  < N 3  < N2. 
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6 Take a Number N I  of matter WI  and an ordinal W I  smaller than 
WI (so that WI E Wd. The Number of matter Wb which is exactly 
l ike N I up to WI exclusive (the form of this Number being con­
stituted by al l  ordinals smaller than W I  that are in the form of 
Nd wil l be called a sub-Number of Nb a sub-Number of N I  
wh ich is a 'cut' of N I  at point W I .  We denote this sub-Number 
Ndwl . 

7 Amongst the sub-Numbers of Nb  some are smaller than N I  (when 
WI is in the form of Nd ,  others are larger than NI (when WI is in 
the residue of Nd. The former, gathered together, constitute the 
low set of Nb  denoted by Lo(N d .  The latter constitute the h igh 
set of Nb denoted by Hi (N d .  

8 It can be proved that N I is the cut of its low set and its h igh set 
in the following way: it is the Number of minimal matter situated, 
according to the order of Numbers, between the low set and the 
high set ( larger than every Number in the low set and smaller 
than every Number in the h igh set ) .  

9 More general ly, it can be shown that, given two sets of Numbers 
such that all those of the first set are smaller than all those of the 
second, there exists a unique Number N of minimal matter s itu­
ated between these two sets. Taking two such sets B and A, we 
can say that this Number N is the cut of B and A, which is written 
N = BfA. Thus NI = Lo(NdfHi (N d .  This specified cut is called 
the canonical presentation of N I .  

16.2. We wil l now take a stroll through the borderless domain of 
Numbers, pointing out some of them, and in particular a l l  those tra­
ditional species: natural whole numbers, negative whole numbers, 
ordinals, rationals, reals .  But also so many others, which finitude and 
the wretchedness of our inherited practice of Number keeps from us. 
How negligible are numbers amongst Numbers ! The being of Number 
exceeds in every direction that which we know how to negotiate. Our 
strength, however, is that we possess a way of thinking of this excess 
of being over thought. 

16.3 .  Zero 
There is a very distinctive Number, the Number (O ,O ) ,  whose matter 
is the void, and whose form, consequently, is also the void. This 
Number inscribes as numerical gesture the absence of every gesture, 
in default of any matter. It is absolute Zero, the Number without 
numerica lity. Of course, its ontological foundation is the empty set, 
the suture to being of every text, the advent of being qua being 
to the thinkable. There is no doubt that it is this void that we are 
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thinking here as Number. But thinking it as Number makes a differ­
ence . It is not for example the same thing, not the same Number, as 
it would be if the void was only in the position of matter, or only in 
the position of form. The number ( ( 0 ) ,0 ) ,  or ( 1 ,0 ) ,  whose form is 
void, cannot at all be identified as the Zero of Number. Certainly, the 
act of sectioning it is equally nul l ,  it doesn 't extract anything from 
its matter, but this matter suhsists unaltered, constituting, in the 
absence of any act, the real substance of that which this gesture never 
even started.  The only true Zero is that wh ich subtracts itself from 
al l  numerical gesture because it has nothing, no material or natural 
multiplicity, upon which this gesture could be carried out or not 
carried out. Zero is thus outside all appreciation, positive or negative, 
of the act of numerical section. It is, very precisely, neither positive 
or negative. It subsists in itself, inaccessible to all evaluable action. 
Zero is being qua being thought as Number, from within ontology. 

16.4 .  Since we have said, a l ittle metaphorically, that Zero is neither 
positive nor negative, can we not give a precise numerical sense for 
these adjectives ? Elementary arithmetic a lready introduces - to the 
obscure rel ish of every schoolchi ld - whole negative numbers such 
as -4 . 

Consider for example the Number N ,  whose matter is the l imit 
ordinal co, and whose form has only the ordinal ° as element. Which 
is to say that the form is the singleton of 0, and that the number N J  
can be  written : (co, (O ) ) .  If we  compare this Numher to  Zero, that is, 
to (0 ,0 ) ,  we can clearly see that their discriminant is 0, which is in 
the form of N ,  and outside the matter of Zero (any ordinal whatso­
ever, including 0, is outside the matter of Zero, which has no matter) . 
The rules of order indicate to us then that N ,  is larger than Zero. 
It makes sense to say that N ,  is positive. 

Consider now the Number Nz, whose matter is also the l imit 
ordinal co, but whose form is this time the s ingleton of 1 .  This 
Number Nz can be written (co, ( l ) ) .  Once again, the discriminant of 
Nz and Zero is 0.  It can be found this time in the res idue of Nh since 
the form of Nz does not contain ° ( i t  only contains 1 ) , but its matter, 
co, does contain it, co being the l imit col lection of all the finite ordinals, 
including ° of course. We can see, then , that 0, being outside the 
matter of Zero and in the residue of Nz, N2, is smaller than Zero. 
So it makes sense to say that Nz is negative. 

16 .5 .  Positive Numbers and negative numbers 
Our examples can be genera lised in the fol lowing fashion: the dis­
criminant between Zero and any other Number whatsoever is always 
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the empty set O. For Zero is the only number whose matter is void, 
and therefore the only Number where 0 is located outside the matter. 
For every other Number, 0 is located in the form or in the residue. 
And, since 0 is the smallest ordinal,  it is certainly the discriminant of 
Zero and of every number other than Zero. 

The situation is very simple, then :  if any Number other than Zero 
has 0 in its form, then it is larger than Zero . If, on the other hand, 
o is in its residue, it is smaller than Zero, since 0 wil l  a lways be 
outside the matter of Zero. 

We will thus define positive and negative Numbers in the fol lowing 
way: A Number is positive if 0 is an element of its form. It is negative 
if 0 is an element of its residue. 

16.6. Some significant consequences of the definition of positive and 
negative Numbers: 

1 Since Zero is without matter, without form and without residue, 
o cannot be an element either of the form or of the res idue of 
Zero. The description in 16.3 i s  thus transformed into a mathe­
matical concept: Zero is neither positive nor negative. 

2 Zero is not at a l l  the smallest Number. It is larger than every 
negative Number, and negative Numbers constitute, to a l l  appear­
ances, a l imitless, inconsistent domain. Between the negative 
Numbers and the positive Numbers, Zero l ies at the centre of that 
which has no periphery. 

3 Zero is not defined by extrinsic operations, it is not introduced as 
the 'first' term of a succession, nor as the 'neutral element' of an 
operation (an attribute which it possesses incidenta l ly and second­
arily ) .  It is characterised by its numerical being. We have not 
strayed from our ontological path,  which subordinates all opera­
tional or algebraic considerations to immanent characterisation . 

4 More generally speaking, the categories 'positive' and 'negative ' 
have been introduced into the cons ideration of the order of 
Numbers only for convenience of exposition. The predicate 'has 
o in its form' or 'has 0 in its residue' are wholly intrinsic. The 
examination of the being of a Number alone tel ls us whether it 
is positive or negative, without comparing it with any other 
Number. 

S Positivity does not depend in the least upon the 'quantity' 
of the matter of a Number, or the size of its form, but only 
upon the location of the void. The Number (2 , ( 0 ) )  is positive, 
whi lst the Number (00, (00 - 0 ) ) ,  whose matter is 00 and whose 
form takes in all of this matter apart from 0, is negative. There 
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is finite positive numericality, and infinite negative numericality, 
regardless of whether the question is one of matter or one 
of form. 

6 If a Number N is positive, then, s ince 0 is in its form and is neces­
sarily minimal, it fol lows that every sub-Number Nlw of N (except 
for Zero, which is a sub-Number of every Number, the sub­
Number N/O) is also positive: the elements of the form of Nlw 
are actual ly the elements of the form of N up to the ordinal w, 
and, unless w is 0, 0 wil l  be amongst these elements, since N is 
positive. Similarly, every sub-Number of a negative Number N, 
apart from 0, is negative ( it has 0 in its residue, as N does ) .  In 
particular, the non-nul l  e lements of the low set and al l the ele­
ments of the high set of a positive Number are positive; l ikewise, 
all the elements of the low set and all the non-nul l  elements of 
the h igh set of a negative Number are negative. 

1 6.7. Meditation on the negative 
The concept of negativity, as proposed by the universe of Numbers, 
is every bit as profound as its apparent paradoxical ity suggests. One 
might think at first that negativity consisted precisely in the incorpo­
ration of the void into the form of Number. Isn't there more positivity 
in a form that has not been marked by the stigma of nothingness? 
Isn't the plenitude of the numerical section better assured if it expels 
from its positive production that dubious index of the multiple that 
al lows no presentation ? 

Number enjoins us here to d isabuse ourselves of any remaining 
temptation towards an ontology of Presence . If the lack of void in 
the form of Number seems 'positive ' ,  th is is the case only if  we 
identify being with the plen itude of the effectively presented. We 
are then tempted to index to the negative every occurrence of that 
which presents nothing, every mark whose multiple-referent is sub­
tracted . But the truth is entirely otherwise: it is precisely under this 
mark that being qua being comes to thought. In which case there 
is less ontological dignity in a Number that does not retain this 
mark in its form than in a Number that does so reta in it. It is from 
the point of the void that the d ign ity of being, the superiority of a 
Number, can legitimately be measured. Numerical superiority is the 
symbol of this superiority with regard to what is at the disposal of 
thought. 

The ontological clarity ( for a subtractive ontology) of the state­
ment 'a Number is negative if the mark of the void is in its residue' 
underlies what might be cal led the eth ical verd ict of Number. I hope 
to show one day that what is Evil ,  in any situation where the void is 
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attested to ( and such, singularly, are post-evental situations ) ,  is the 
treating of that testimony precisely as if it were a residue of the situ­
ation. What is Evil is to take the void, which is the very being of the 
situation, for unformed. The forms of Evil declare substance ful l  and 
luminous, they expel every mark of the void, they rusticate, deport, 
chase off, exterminate those marks. But the verdict of Number tells 
us: it is in this claim to full substance, in this persecution of the occur­
rences of the void, that res ides, precisely, the negative. A contrario, 
positiv ity assembles and harbours the marking of the void within its 
forms. And, this being so, it accords thought to being in an intrinsi­
cally superior fashion. 

To take the void for a res idue is a negative operation, a detestable 
'purification' .  Every true pol itics, in fidelity to some popular event, 
takes on the guardianship of the void - of that which is un presented, 
not counted, in the situation - as its h ighest duty in thought and in 
action. Every poem seeks to uncover and to carry to the formal l imits 
of language the latent void of sensible referents. Every science treats 
positively the residue of its own history, that which has been left 
outside of its form, because it knows that precisely there dwells that 
which wil l  refound and reformulate its system of statements. All love 
ultimately establishes itself in the joy of the empty space of the Two 
of the sexes which it founds, and from this point of view the romantic 
idea of a ful l ,  fusional love, under the purified sign of the One, is 
precisely the Evil of love. 

The negative, as its concept is establ ished by Number, is a punctual 
discord of thought and of being. 'Negative' is every enterprise of 
formation which abandons, fa ils to cherish, this unique point upon 
whose basis there can be forms and the unformed, forms and resi­
dues; the point where being, in the guise of the un presented, assures 
us that we do not think in vain. 

16.8. The symmetric counterpart of a Number 
Not much needs to be done in order to 'negativise' a positive Number: 
it suffices to remove 0 from its form. Number teaches us the precarity 
of the positive, its a-substantial character. It is at the mercy of the 
transfer of one single point to the residue. And this point is the most 
transparent of al l ,  that point that is not supported by any multiple­
presentation: the mark of the void. 

This idea of the transfer of a term from one location ( here, the 
form) to the 'opposite' location ( here, the residue) can be general ised. 
Take a Number N and the Number obtained by inverting the form 
and the residue of N: The residue of N is promoted into the form, 
whilst al l  the terms of its form are demoted into the residue. This 
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new Number operates, in the same ordinal-matter, a cut inverse or 
symmetrical  to that which defines N. We wil l  cal l  this Number the 
symmetric counterpart of N ( indicating a symmetry whose centre, as 
we shal l  see, is Zero) .  We wil l  denote by -N, and read as 'minus N', 
the symmetric counterpart of N. 

A Number and its symmetric counterpart can be presented as 
fol lows ( using the diagrams introduced in 1 2. 3 ) :  

F (N)  F (N )  

* Number N :  • 
0 R (N)  R (N )  I 

I 
I 

0 F (-N) F (-N) 

* N umber-N : • 
R (-N) R (-N) 

It is clear in the diagram that N is positive (0 is in its form) and 
that -N, its symmetric counterpart, is  negative. Evidently, this wil l 
always be the case. Conversely, when N is negative ( 0  is in its residue), 
-N is positive (0  is in its form) .  

I f  we  take the symmetric counterpart -N of  N, then the symmetric 
counterpart -(-N) of -N, we arrive back at N: we have changed the 
form into the residue, and then the residue into the form. It is that 
old law learnt in the schoolroom, which spontaneously opposes itself 
both to Hegel and to intuitionism: two negativising operations take 
us back to the initial affirmation. However, one must sti l l take care, 
as always, to note that -(-N)  is not necessarily a positive Number. 
If the starting Number N is negative, its symmetric counterpart is 
positive, and the symmetric counterpart of its symmetric counterpart 
- which is itself - is once again negative. The s ign '-' is not a sign of 
negation but one of symmetry . Which confirms for us that the nega­
tive ( unl ike the symmetrical )  is not an operational dimension . It is a 
structura l predicate of the being of Number. 

16.9 .  A few examples. 
What is the symmetric counterpart of the positive Number (O>, (O ) ) ?  

I t  is  the Number (0), (0> - (0 ) ) ) ,  whose form i s  a l l  o f  0> except for O .  
It i s  obviously negative. 

What is the symmetric counterpart of the negative Number (2, ( 1 ) ) ,  
whose form is the singleton of 1 ?  It is the positive Number (2, (0) ) ,  
whose form is the singleton of ( 0 ) .  In fact, the only elements of the 
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ordinal 2 are 0 and 1. In the former case, 0 constitutes the residue, 
in the latter, the form. 

Take a positive Number N and its symmetric counterpart -N. To 
every Number situated 'between'  Zero and N we can make corre­
spond a Number situated 'between' -N and Zero: we just take its 
symmetric counterpart. In fact, it is clear that, where it is  the case 
that Zero < N, < N, it is also the case that -N < -N , < Zero. This 
can be verified by examining al l  possible cases of inequal ity between 
N, and N (see 13 . 1 3 ) , remembering that -N swaps the form and 
residue of N. 

There are thus 'as many' Numbers between -N and Zero as there 
are between Zero and N, because the function ((N I l = -N, is a biuni­
vocal correspondence between the two 's l ices ' of Numbers . But take 
care ! The correspondence is not between two sets .  The interval 
between Zero and N is not a consistent totality any more than the 
entire domain of Numbers is .  This can easily be proved: taking, for 
example, the Number (2, (0 ) ) ,  we know that all Numbers of the type 
(W, (O ) ) ,  where W is any ordinal whatsoever larger than 2,  are smaller 
than (2, (0 ) ) .  It is the law that we discovered in 1 3 . 16 :  i f  the form 
stays the same and the matter is increased, the Number gets smaller. 
Meanwhi le, al l  Numbers (W, (O ) )  are positive, s ince 0 is in their form. 
So there are 'as many' of these positive Numbers - that is ,  those situ­
ated between Zero and (2, ( 0 ) )  - as there are ordinals larger than 2. 
But we know for sure that 'al l  ordinals larger than 2 '  is an inconsis­
tent multiplicity. 

Keeping this in mind, we can al low ourselves to visual ise symmetry 
in the following way, the axis being that of Numbers taken according 
to their order: 

• 
-N 

• • • • 
N 

This j ustifies our speaking of a symmetry whose centre is Zero. 

16. 10. The ordinals 
We announced a long time ago ( see for example 8 .8 )  that the ordinals, 
which constitute the stuff of the being of Numbers, can also them­
selves be represented as Numbers. What do the Numbers that 
represent ordinals look like ? 

Let's consider the Number (W,W), whose matter is the ordinal W 
and whose form retains all of this matter. In other words, this is a 
case of a maximal numerical section, or of exhibiting - as certain 
contemporary artists have done - the raw material alone as the 
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'work' .  The most interesting thing is to compare the Number (W,W) 
with the Number (W,O) ,  whose form is void. In both cases, we feel 
that the act is somehow nul l .  But the two nul l ities are distinct. The 
Number (W,W) treats the whole of the matter as a form, whereas the 
Number (W,O ) does not inscribe any form in the matter. The immedi­
ate result is that (W,W) , for any W other than 0, is a positive Number, 
whereas (W,O ) is a negative Number ( remembering that 0 is not an 
element of 0, and that therefore 0 is not in the form of (W,O ) ) .  We 
discern a certa in positivity in the first gesture which designates the 
matter as form, whereas the second, overwhelmed by the matter, is 
unable to designate anything whatsoever. 

But if (W,W) is treated as a positive production, the assumption 
of a matter as form, it remains nevertheless a fact that this production 
repeats the ordinal-matter. This redoubling of the ordina l  (as matter, 
then as form) legitimates our treating Numbers of the form (W,W) 
as the Numerical representatives of the ordinals .  

We wil l  therefore say the fol lowing: An ordinal W is presented as 
Number in the form (W, W); that is, the Number whose matter is W 
and whose form is W. This presentation is the ordinal ' itself', but 
thought as Number. 

1 6. 1 1 .  To be sure that this is the ordinal ' itself', we must explicitly 
prove that the order of Numbers respects the order of the ordinals, 
which is belonging. In other words, that if it is the case - ordinals 
being thought in their own domain - that WI  E W 2, then it is  also 
the case - ordinals being thought as Numbers - that (W"Wd < 
(W2,W2 ) .  

This is obviously the case. Because the discriminant of (W"Wd 
and (W2,W2 ) is necessarily the smallest ordinal to belong to WI  and 
not to W2, or to belong to W2 and not to WI ' If WI E W2, this smallest 
ordinal is precisely W" which belongs to W 2 but cannot belong to 
itself. Now W I  is outside the matter of (W"Wd, and it is in the form 
W2 of (W2,W2 ) .  So it is indeed the case that (W"Wd < (W2,W2 ) .  

Thus the order o f  the ordinals thought as Numbers, i n  the formal 
redoubling of their material being, is the same as the order of ordinals 
thought in their being, as transitive sets all of whose elements are 
transitive. The Numerical representation of the ordinals is structur­
a l ly isomorphic to the ordinals .  This being so, there is no reason why 
we should not consider that the ordinals 'themselves ' are inscribed, 
identica l ly represented, in the order of Numbers. 

16 . 12 .  From the fact that an ordinal is a Number of the form (W,W), 
three consequences can be drawn: 
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1 Every sub-Number of an ordinal is an ordinal .  For, if (W,W) is 
an ordinal, a sub-Number is of the form (w"wd,  where WI E W. 
It is therefore the ordinal WI ' 

2 All these sub-Numbers wil l  man ifestly be ordinals smaller than 
the initial ordinal .  It follows that they are all in the low set of 
the initial ordinal, and that the h igh set, general ly composed of 
sub-Numbers larger than the Number, is empty here.  This is a 
characteristic property of ordinals thought as Numbers. Gener­
al ly speaking, a sub-Number of the h igh set is a sub-Number 
Nlwl such that WI  is in the residue of N. But, in the case of 
an ordinal (and this could be a defin ition of the ordinals ) ,  the 
residue is empty. The high set of an ordinal is therefore also 
empty; and, conversely, i f  the h igh set of a Number is empty, 
then its residue is empty: its form coincides with its matter; it 
is an ordinal .  The canonical presentation of an ordinal  wi l l  
therefore be of the form Lo(W)/O . But what is more, as the 
low set has for its elements all ordinals smaller than W, it is, 
as a set, identical to W (every ordinal is the set of all the 
ordinals smal ler than it, 1 1 .2 ) .  Finally, the canonical representa­
tion - most distinctive - of an ordinal  W thought as Number 
is simply W/O. 

3 The symmetric counterpart of an ordinal (W,W) is obtained by 
swapping the residue and the form. Now, the residue is empty. 
So it is the void that will be substituted for the 'total '  form 
that is W: the symmetric counterpart of (W,W) is the Number 
(W,O ) .  Thought as Number, an ordinal W allows of a symmetric 
counterpart, so we can freely speak of the Number -W. 

It is clear that every ordinal apart from ° is a positive Number, s ince 
its form, W, contains ° as an element. The symmetric counterpart 
of every ordinal other than the void is therefore a negative Number, 
as can be seen directly in writing (W,O ) .  It will be found, moreover, 
that all the properties of an ordinal W are inverted by the passage 
to -W. So that now every sub-Number of -W is the symmetric 
counterpart -WI of an ordinal WI smaller than W; and it is the low 
set of -W that is void, since - the form of -W being void - every 
sub-Number of -W is larger than it; and, finally, the high set of -W 
is identical to -W, with the result that the canonical representation 
is: Ol-W. 

We are thereby assured that ordinals are Numbers. l But what is 
more, grasped in terms of Numerical ity, the ordinals are symmetricis­
able: we have opened up on the other side of Zero (which is the 
ordinal 0, thought as Number) an immense space where wil l  be 
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inscribed those formerly unthinkable entities: natural multiplicities 
submitted to the negative. Numericality is capable of symmetricising 
nature. 

16. 1 3 .  Positive and negative whole numbers 
The natural whole numbers, thought in their being, are none other 
than the finite ordinals, which is to say the elements of 0>, the first 
l imit ordinal .  In fact we have already given their definition and dis­
cussed their operational dimensions in chapter 1 1 . 

This preceding work already settles the question, then : thought as 
Numbers, natural whole numbers are of the type (n ,n) ,  where n is a 
finite ordinal. Evidently, they are al l  positive. The order of natural 
whole numbers qua Numbers coincides with the order of natural 
whole numbers that we already know, the order according to which 
every schoolboy says that n is larger than p.  For we know that, if 
p e n - which is the ontological vers ion of traditional order - then 
(p,p) < (n,n)  in the order of Numbers. We therefore have the right to 
write the Number (W,W) as W, to indicate that an ordinal ' itself' is 
being inscribed in the domain of Numbers . We therefore write a 
natural whole number, thought as Number, as n.  

The sub-Numbers of a natural whole Number are the finite ordi­
nals smaller than it, therefore the natural whole numbers smaller than 
it. If n is this Number, these will be natural whole Numbers 
(0,0 ) , ( 1 , 1 ) , . . .  , ( ( n - l ) , (n  - 1 ) ) ,  which we could also write as 
0, 1 ,  . . .  , (n  - 1 ) . Taken together, they form the low set of n. The high 
set of n is empty, and the canonical representation of a wh ole n, 
thought as Number, is ( 0, 1 ,  . . .  ,(n - 1 ) )/0. Since n's elements are 
precisely 0 , 1 , . . .  ,(n - 1 ) , the low set whose e lements they are can be 
written as n/O . (NB This is not c ircular, because, considered as a set, 
n does not contain itse lf as an element ) .  

The symmetric counterpart of a natural whole number is a Number 
of the form (n ,O ) ,  where n is a finite ordinal .  We write it -n, we say 
'minus n' .  We posit that a Number is a whole negative Number if it 
is the symmetric counterpart of a natural whole Number, that is, one 
which takes the form (n,O) .  The sub-Numbers of a negative whole 
number -n are all the whole numbers -p , where p e n. Taken 
together, they form the h igh set of -n, whose low set is empty. The 
canonical representation of a negative whole Number is therefore 
ultimately written as Of-no 

In order to confirm the complete identity of the traditional positive 
and negative whole numbers and of the positive and negative whole 
Numbers, it must obviously be the case that operations on these 
Numbers coincide, as order did, with operations on numbers. If for 
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example we define an addition N I  + Nz on Numbers, then the resu lt 
of this operation in the specific case of whole Numbers, hence in the 
case of an addition of the type m + n, should be 'the same Number' 
as the whole number which, in the calculations of our schooldays, 
corresponded to the addition of these two whole numbers. These 
operational verifications will be carried out in chapter 18. 

So far as the inscription within the Numbers of natural whole 
numbers thought in their being is concerned, our task is complete. 

16 .14 .  Dyadic positive rational numbers 
We have already spoken of rational numbers in relation to Dedekind 
cuts (compare 15 . 5 ) :  a positive ( or null) rational number is a fraction 
or relation % of two natural whole numbers, wh ich is to say a pair 
(p,q) of whole numbers. The first is cal led the numerator, the second 
the denominator. The numerator can be null ( identical to the empty 
set) ,  but it is prohibited for the denominator to be 0 (we know that 
the relation tr is 'undetermined ' ) .  

We have no desire here to  enter into a rigorous introduction to 
these traditional numbers ( in fact, here we must consider fractions as 
irreducible, impossible to simplify ) .  The intuitive idea of the fraction 
will suffice for us. 

It is evident that the natural whole numbers are a subset of rational  
positive or nul l  numbers; we j ust need to take a rational in the form 
t to obtain n. In other words : a whole number is a rational of the 
type (n, 1 ). 

The classical order of the rationals has the fundamental property 
of being a dense order. In other words ( see 15 . 5 ) ,  given two rationals 
* and :: such that * < � , however 'near' these two numbers might 
be, there always exists a th ird (and, from there, an infinity of them) 
which comes between the two initial numbers: there is a :' such that 
� < � < �  

, 
q, q ,  qz ' 

A dyadic rational number is a number of the form J. whose 
denominator is a power of 2 .  Or, in our paired version, a rational 
number (P,2°). 

Dyadic rational numbers themselves form a dense subset of the 
rationals: if  rl and r2 are rationals such that rl  < r2, a dyadic rational 
can always be intercalated between them. 

The important thing for us is that every sequence of augmenting 
rationals rl < r2 < . . .  < ro < . . .  can be ' replaced' by a sequence of 
dyadic rationals dl < . . .  < do < . . .  : take the dyadic rationals situated 
'between' rl and r2, then r2 and r3 , etc. We can also say that the dyadic 
rationals form a ' basis '  for all the rationals .  More specifically, a non­
dyadic rational number can be 'approached' as closely as you l ike 
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from a dyadic one, because you can always lodge a dyadic in-between 
r and r + r ', however small r ' might be. 

16. 1 5 .  We have, then , the fol lowing statement, perhaps the most 
important in the process of the representation of ( traditional ) numbers 
as (ontologica l )  Numbers: 

Every dyadic rational number can be represented as a Number of 
finite matter, and every Number of finite matter represents a dyadic 
rational number. 

16 . 16. How, in general ,  is a Number of finite matter presented ? In  
the  form (n , (p t .P2, ' "  P, ) ) ,  where the  whole numbers P I .  P2, etc. 
which make up its form are whole numbers smaller than n, the matter 
of the Number. Since we are keeping to rational positive numbers, 
we wil l  consider here only Numbers of positive fin ite matter, that is, 
Numbers which have ° in their form. 

The subtle idea that guides the 'projection' of these Numbers of 
fin ite matter into the dyadic positive or null rationals is the following. 
Let n be the matter of the Number. We take all the elements of this 
matter in order, from ° to n - 1 ,  which is the largest whole number 
contained in n. In so far as we stay in the location of the first element, 
° - which is the form, since the Number is positive - we attribute 
the value 1 to the whole number in question . Say that we come across 
the first element of n - say p - not to have the same location as 0, 
in other words the smal lest whole number p in the matter of the 
Number to be in the residue. We attribute to this whole number the 
value - ± . After this, we general ly attribute to whole numbers q 
which fol low the value zf.;r if they are in the form, the value -zf.;r 
i f  they are in the residue. 

Final ly, the value of the last term beyond p (p being sti l l  the first 
term which does not have the same location as 0, if it exists ) ,  the 
value attr ibuted to n - 1 ,  then, wi l l  be * ,  with or without the sign 
depending on whether n - 1 is in the residue or in the form. 

Or, once again :  a belonging to the residue wil l a lways be affected 
by the sign - . In traversing in order al l  the elements q of n, in so far as 
one remains within the form, which is the location of 0, each element 
is counted for 1 ,  for a whole value. As soon as the location changes, 
we count the elements for a dyadic rational of the form zf.;r ,  where 
p is the first for which the location changes, from now on adding the 
sign - whenever this location is the residue. 

Final ly, we associate with the initial Number of finite matter the 
rational number obta ined from the sum (in the usual sense) of all 
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the values thus attributed to the elements of n. This rational number 
is dyadic, s ince al l  the denominators in question are dyadic, and 
since - as every schoolchi ld knows - to add fractions, one takes as 
denominator the smallest common multiple of the denominators. 
Now, the smal lest common multiple of powers of two is a power 
of two. 

16. 1 7. Let's give an example of the procedure. Take the Number 
(5 , (0 , 1 ,3 ) ) , whose (finite) matter is the ord inal 5 and whose form 
contains 0, 1 and 3. The residue is thus composed of 2 and of 4. 

Since ° is in the form, we give it the value 1 .  
Since 1 i s  also in the form, we give it the value 1 .  
The location changes with 2, which is in the residue. We give it 

the value - t o 

3 · · h f . .  h I 1 1 IS In t e orm; we gIve It t e va ue 2'-2 , 1  = 2' • 

4 is in the residue, we give it the value - /2 . 1 = -fr . 
So, in the end, the rational number corresponding to the Number 

(5 , (0, 1 ,3 ) )  wil l  be obtained from the sum: 

1 1 1 1 3  
1 + 1 - - + - - - = -

2 2
2 

23 23 

We can see very wel l  that this is indeed a dyadic rational .  

16. 1 8. In order better to exh ibit the construction of th is  correspon­
dence, which bears witness to an isomorphy, an identity of being, 
between positive Numbers of finite matter and positive dyadic ratio­
nals, we wil l  formalise things a l ittle. We will then see clearly that we 
are dealing with an inductive definition, a definition by recurrence. 

Take a positive Number of finite matter. We will define by recur­
rence the fol lowing function (, defined on the elements of the matter 
n of the Number: 

R ULE 1 :  ((0)  = 1 .  

R ULE 2 :  ((p + 1 )  = 1 ,  if ((p )  = 1 for a l l  whole numbers up to and 
including p, and if p + 1 is in the form of the Number. 

R ULE 3: ((p + 1 )  = -t i f  al l  the whole numbers up to and includ­
ing p are in the form and p + 1 is in the residue. 

R ULE 4:  ((p + 1 )  = 2!. 1 if the value of p is iq or - 2
1
q and p + 1 

is in the form. 
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R ULE 5 :  ((p + 1 )  = -� if the value of p is f.- or -f.- and p + 
1 is in the residue. 

These rules wil l  al low us to calculate the rational value of ( for al l  
the elements of n, the matter of the initial Number. Using Ra(N) to 
denote the dyadic rational that corresponds to N, we then posit 
that: 

Ra(N) = (( 0)  + (( 1 )  + . . .  + ((n  - 1 )  

The sign + indicates here the algebraic sum in the normal sense. 
It is clear that Ra (N)  is a dyadic rational. 

16 . 19. Let' s  proceed with the calculation of another example, the 
Number (4, (0, 1 ,3 ) ) ,  which is, of course, a positive Number of finite 
matter: 

So: 

((0 )  = 1 ( by rule 1 ) . 

(( 1 )  = 1 ( by rule 1 ) . 

((2 )  = -.!. ( by rule 3 ;  2 is in the residue ) .  
2 

1 1 +'(3 )  = - - - (rule 4,' 3 i s  i n  the form) .  ( '  
2 1 + 1  -

2
2 

Ra( (4 , (0 , 1 ,3 ) ) )  = ((0 ) + (( 1 )  + ((2 )  + ((3 ) .  

1 1 
Ra ( (4 , (0 , 1 ,3 ) ) )  = 1 + 1 - "2 + 2:2' 

Ra((  4, (0, 1 ,3))) = � , which is a dyadic rational, as we said it 
would be. 2 

1 6.20. Whole ordinal part of a Number 
It might appear strange peremptorily to change the procedure when 
we get to the first whole p that doesn't have the same location as 
o in the Number of finite matter under consideration . Gonshor 
real ises this: 'The whole idea of a shift from ordinary counting to 
a binary decimal computation at the first change in sign may seem 
unnatural at first. However, such phenomena seem inevitable in a 
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sufficiently rich system. ,2 This explanation of Gonshor's - more of 
an apology, really - is a l ittle quick. 

To find the true underlying concept, we should ask what i s  actually 
represented by the p first consecutive ordinals of a Number N of 
finite matter which have the same location as the init ial term O. 
Assume once more the positive case (0  located in the form) .  If we 
partition N at point p ( the first ordinal, in the order of ordinals, to 
change location ) ,  we obtain the sub-Number NIp all of whose ele­
ments have the same location as o. It is clear that, since this location 
is the form, NIp is the whole positive Number p,  that is, the Number 
whose matter is p and whose form is made up of the elements of p.  
The function f wil l  attribute the va lue 1 to a l l  these elements, and 
the sum of the values 1 + 1 + . . .  wi l l  give the 'classic' whole number 
p. Which, we can add immediately, is an a lgebraic sum of dyadic 
rationals of the type il• or - 21q , where q is no more than 1 .  It fol lows 
that Ra(N) will be the sum of the whole p and a negative dyadic 
fraction between -1 and 0 (at least, unless it happens to be a whole 
number ) .  Finally, p is a type of whole part of the pos itive rational 
Ra(N) ,  that is, the natural whole number c losest to Ra (N)  'from 
above' :  (p - 1 )  < Ra(N) < p. 

From the point of view of Number, in fact, p is the largest sub­
Number of N to he an ordinal, since 'being an ordinal '  means pre­
cisely being a Number al l  of whose matter is in its form. That the 
location changes at point p (p i s  in the residue) means precisely that 
NIp + 1 is no longer an ordinal either, since p, an element of its matter, 
is in the residue. It is therefore even more fitting to say that p is a 
'whole part' of N. By which we mean: the largest whole number p 
belonging to the matter of N and such that the sub-Number NIp is 
the ordinal p.  Or even more simply: the whole part of N is the largest 
ordinal to be a sub-Number of N.  

Now the procedure becomes clearer: i t  works firstly by making 
correspond, via f, the elements of the whole part of N and the 
whole part 'from above' of the dyadic rational Ra(N) .  The 1 values 
are used to do this. And then it is a question of calculating the 
remainder, which is less than 0, but more than -1 ,  and to do this 
we use dyadic fractions of the type j; or -j; , q indicating the 
rank of the ordinal in question beyond the whole part p. There 
is no 'unnatural '  mystery in al l  of this, but rather a profound 
logic. 

16.2 1 .  We can general ise these remarks. Given a positive Number N 
of matter W, we wil l  cal l  whole ordinal part of N the largest ordinal 
WI E W such that the sub-Number Nlwi is the ordinal W I .  
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The attentive reader wil l  balk at this: how can we speak so freely 
of the ' largest ordinal '  to satisfy a property? Doesn't the existence of 
l imit ordinals mi l itate against any such claim? Where ordinals are 
concerned, only min imal ity is at work. 

The remark is well taken . We wil l  have to reformulate our defini­
tion, then, and posit the fol lowing: The whole ordinal part of a posi­
tive Number is the smallest ordinal located in the residue. Since the 
Number is positive, 0 is located in the form. The smallest ordinal 
located in the residue is thus indeed the first ordinal, in the ascending 
order of the ordinals of the matter of N, al l  of whose elements are 
in the form, although it itse lf is in the residue. These elements con­
stitute the whole ordinal part of N. Here is a case where 'the largest' 
translates as 'the smallest ' .  

I f  WI is the whole ordinal part of a positive Number N then, j ust 
as in the above case, N < w" since the sub-Number WI is, considered 
as an element of the matter of N, in the residue of N, whereas it is 
outside its own matter. 

It can also be said that the whole ordinal part of a positive Number 
is in the h igh set of that Number. 

If W I  is a successor ordinal ,  once again we find the ' framing') of 
the endpoint. Let W2 be the predecessor of WI ; this gives WI = S (W2 ) '  
Since WI  is the smallest ordinal to  be in the res idue, its predecessor 
W2 must be in the form. Of course, since all the elements of W2 are 
elements of W I  ( transitivity of ordinals ) ,  and al l  the elements of W I  
are in the form, a l l  the elements of  W2 are too; so  N1wz i s  the ordinal 
W2 . And, given that this ordinal is outside its own matter and in the 
form of N, then W2 < N, and so finally W2 < N < S (W2 )  = WI ' This is 
the interval we are looking for. 

If, on the other hand, WI is a l imit ordinal, it will certa inly always 
be the case that N < WI , but we would search in vain for the largest 
ordinal smaller than N, because on the other side of WI there is no 
'predecessor' . N would then have a s ingular position: smaller than a 
l imit ordinal ,  it would be larger than all the ordinals smaller than 
this limit ordinal. It would come to insert itself in that space we 
thought was 'fil led in '  by the ordinals that precede the l imit, the space 
'between ' a l imit ordinal and the infin ity of successor ordinals of 
which it is the l imit. 

1 6.22. Let's give an example. Take the Number N = ( S (O)) ,S (O)) - (0)) ) ,  
whose matter is the successor of 0) and whose form is a l l  of that 
matter except for 0) itself, which is the only element of the residue. 
The l imit ordinal 0), being the first ordinal in the matter of N to be 
in its residue, is the whole ordinal part of N. It is indeed the case that 



NUMBERLESS ENCHANTMENT OF THE PLACE OF NUMBER 1 73 

N < co, s ince their discriminant is co, which is in the residue of N and 
outside the matter of co. What is more, for every element of co - that 
is, for every natural whole number n - it is the case that n < N, since 
n is outside the matter of n and in the form of N. The Number N is 
thus at once smaller than the first limit ordinal co and larger than al l  
the natural whole numbers n of which co is the l imit !  This shows to 
what extent the domain of Numbers saturates that of the ordinals, 
which it contains:  there are 'many more' Numbers than there are 
ordinals .  

We can also say that N is ' infinitely near' to co, far nearer than even 
the most immense of the whole numbers could be. This notion of 
'infinite proximity' is of a prodigious phi losophical interest. It opens 
up new spaces for exploration in the endless kingdom of Number. We 
shall undertake these explorations a l ittle later. 

16.23.  Sequence and end of the dyadic rationals 
We have at our disposal a function Ra (N)  which makes a dyadic 
rational correspond to every Number of finite matter. The whole 
numbers are included in this correspondence, because the positive 
whole number n thought of as Number will correspond, through the 
function Ra, to the sum 1 + 1 + . . .  + 1 n times - that is exactly the 
Number n, since, i f  a Number is a natural whole number, then all of 
its sub-Numbers are in its form. It would be better to say that the 
function Ra associates a dyadic rational  with every Number of finite 
matter - even if this Number is whole. 

To complete the work, and to conclude that the dyadic rationals 
'themselves ' are represented in Numbers, we must: 

• confirm that the order of Numbers of fin ite matter is isomorphic 
with the customary order of corresponding dyadic rationals, so 
that, if  N l < N2 in the order of Numbers, then Ra(N d < Ra(N2 ) 
in the normal order of rationals;  this amusing mathematical exer­
cise is sketched nicely in the note;4 

• prove that all the dyadic rationals are obtained through the func­
tion Ra appl ied to Numbers of finite matter; this comes down to 
proving that every positive dyadic rational can be put in the form 
of the algebraic sum of a certain whole number ( its whole part 
'from above ' )  and dyadic rationals of the form +.- or -+.- ; because, 
once this is done, one can reassemble the Number N, whose value 
for Ra is the rational thus dismembered;5 

• prove that the operational dimensions of the rationals - addi­
tion, multipl ication, division, in brief, everything that gives them 
the algebraic structure of a field, are isomorph ic to the same 
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operations defined for Numbers and appl ied to Numbers of 
finite matter; this relates to the examinations made in chapter 
1 8 , with one obvious exception: in order to have negative dyadic 
rationals, the procedure of symmetricisation would be used, 
which defines the general manner of passage to the negative: 
inversion of swapping form and residue. Of course, we will sti l l  
be dealing with a Number of finite matter ( but th is  time with 
o in the residue) .  

As far as the ontological s ide of things is concerned, we have 
attained our goal .  A dyadic rational ,  thought in its being, inscribed 
as Number, has a very simple intrinsic definition : its matter is finite. 

As far as being is concerned, that, this clarifies however dense the 
rationals might be, even to the point of an infinite swarming between 
two consecutive whole numbers, they nevertheless belong to the 
finite. The numerical ontology of the infinite begins with real 
Numbers. 

1 6.24. Real numbers 
We know that rea l numbers provide the model for the geometrical 
'continuum' :  their figure is that of the points of a line. It is the 
real numbers that have subtended the entire edifice of analysis, 
chef-d'oeuvre and keystone of modern mathematical thought, 
since Newton and Leibniz. 

For a long time, the continuum and the functions corresponding 
to it were thought either in terms of geometrical constructions (Greek 
and pre-classical age) ,  or in a primitive and pragmatic fashion (eigh­
teenth and nineteenth centuries ) .  The emergence of a rigorous concept 
of rea ls as entities with which one can calculate took place slowly 
during the course of the nineteenth century, beginning with Cauchy, 
and with Dedekind representing a decisive step. 

Because it is  the closest to that which governs the definition of 
reals in the field of Numbers, we will recal l  briefly the construction 
of rea l numbers by means of 'cuts ' ,  as invented by Dedekind. 

16 .25 .  We wil l  begin with dyadic rationals, which we can use here 
in place of rationals as such, in view of the remark made in 16 .14 .  
Take two sets of dyadic rationals B and A such that every rational in  
B is smaller than every rational in A. We can say both that B has  no 
internal maximum ( for every dyadic rational r 1  in the  set there is an 
r2 in the set such that rl < r2 ) ;  and that A has no internal min imum. 
Suppose now that the fol lowing relation holds between B and A: there 
always exists a dyadic in B that is 'as close' as one likes to a dyadic 
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of A. In other words, if r2 is a dyadic in A and r a dyadic as small as 
one likes, there wil l  a lways exist a rl in B such that the difference 
between r2 and rl is less than r. 

The situation can be visual ised as below, by representing the dyadic 
rationals as points on a l ine: 

B 
• 

r e B  
• • 

< r  

A 
• 

r' e A  

We can see clearly that B 'rises' without ever entering into A, that 
A 'descends ' without entering into B, and that therefore the two sets 
are as close to each other as can be, without ever 'touching'. 

Thus did Dedekind define a rea l number as the point situated 
exactly 'between' B and A; that is, the element, created in  this process, 
which is simultaneously larger than any element of B and smaller 
than any element of A. We can identify this element as the point of 
the cut of B and A. 

It is characteristic of this method that it treats the cut not as a state 
of things in a pre-given universe (which is how we treated it for 
Numbers, see 1 5 .6 ) ,  but as a procedure, defining a mathematical 
entity that does not pre-exist this procedure .  To begin with, there are 
only rationals. And, if the cut is not a rational ( it could be, if the 
upper limit of B and the lower l imit of A coincided) ,  then it consti­
tutes in itself the name, or form of presentation, of a 'being' which 
inexists in the field of rationals .  Therefore the reals are operational 
productions here; they sign, coming forth from non-being, the fictive 
point where B and A are touched by the interposition between them 
of this fiction. Into that place, where there was nothing but the min­
iscule void that separates two sets as c lose as can be, comes the real ,  
which stops up this  void by realising a cut as number. 

16.26. Fictions have no place in the ontological conception of 
Number. If the classic real numbers, those which rea l ise cuts in the 
dyadic rationals, inscribe themselves in the domain of Numbers, it is 
because they exist and are distinguished by some property. They 
cannot irrupt from inexistence, in the form of mere names of a 
lacuna. According to an ontological conception of Numbers, every 
Number is , none results or is resolved in the name of an operation. 
We do battle here against a dominant nominal ism, and we do so in 
the field of number, so commonly taken for an operational fiction . 
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16.27. In fact, our definition of real numbers as Numbers is quite 
l impid: 

A Number is a real number if it is either of finite matter or of 
matter 0), and if its form and its residue are infinite. 

In what fol lows we wil l  substantiate this definition, which repre­
sents real numbers 'themselves ' in the domain of N umbers. 

16 .28 .  The 'projection' of this definition into the concept of reals as 
cuts is basical ly  very simple. 

If a Number is of finite matter, then it is , as we have seen, a dyadic 
rationa l .  

If a Number is of matter 0), then al l  of its sub-Numbers are of 
lesser matter than 0), and therefore of fin ite matter, s ince 0) is the 
smal lest infinite ordinal .  So all of its sub-Numbers are dyadic ratio­
nals .  More specifically, its low set and its h igh set are sets of dyadic 
rationals. And, since every Number is the cut of its low set and its 
h igh set, a Number of matter 0) can be represented as the cut of two 
sets of dyadic rationals. Or, once again, a real number thought as 
Number is a Number whose canonical presentation Lo(N)/Hi(N) is 
made solely from dyadic rationals. 

Finally, if  a Number of matter 0) has an infinite form and an 
infin ite residue, we avoid its low set and high set having internal 
maxima. Because, if the form of N is finite, since it is composed 
of whole numbers (the matter being 0)) , it admits of a largest element, 
say the whole number p. The cut of N at point p defines the sub­
Number NIp, which is obviously the largest sub-Number whose 
discriminant with N is in the form of N, and therefore the largest 
sub-Number in the low set of N. And, if the residue is finite, there 
exists a number p such that NIp is the smallest element of the high 
set of N. A cOlltrario, i f  both the form and residue of N are infinite 
- are sequences of whole numbers without internal maxima - then 
the low set does not have a maximum term, nor the h igh set a 
minimum term. 

We thus find ourselves precisely in the conditions of the Dedekind 
cut: dis joint ascending and descending sets of dyadic rationals with 
no maximum or minimum. Except that what we characterise as 
'reals ' are particular, already existing Numbers, whereas Dedekind 
insta l ls them as a fiction at the void point of a cut. For us, a real 
wi l l  be that unique Number of minimum matter s ituated exactly 
between two sets of dyadic rationals which can be shown to be its 
low set and its high set, and therefore to be sets of sub-Numbers. 



NUMBERLESS ENCHANTMENT OF THE PLACE OF NUMBER 1 77 

It is particularly reassuring to remark that, in the definition of 
reals as Numbers, everything remains immanent. Dedekind cuts des­
ignate the fiction of a number external to two sequences of rationals, 
as the point of contact of these sequences . Whereas, on the other 
hand, the sets of dyadic rationals that we use are composed of sub­
Numbers of a real Number. This immanentisation of procedures is 
typical of the ontological approach, that approach which captures 
the being of Number. To see if a Number that is not a dyadic rational 
is a real number, it suffices to examine it according to its three 
components: 

- its matter must be (0; 
- its form must be infin ite; 
- its residue must be infinite. 

This alone a l lows us to conclude. Then we can state that the 
Number is the cut of two sets of dyadic rationals,  and that therefore 
it is indeed a real number (in the classic sense) .  But, all the same, we 
have remained with in Number, since dyadic rationals are sub-Numbers 
of a Number. 

The immanence of the thinking of being has not faltered for a 
moment in this approach to the traditional  rea l numbers grasped in 
the space of Numbers. The characterisation of a type of pure multiple 
has been substituted for operational fictions. And real numbers are 
no more mysterious here than whole numbers or rationals . Their sole 
peculiarity is that they mark the moment where our passage through 
Numbers prompts us to envisage infinite matters. From this point of 
view, the ontological singularity of the reals in relation to the wholes 
and the rationals can be summed up in one word: infinity. This a lone 
clarifies, irrespective of all complexities of construction, with an eye 
only to that in which the numerical section operates, the fact that 
real Numbers are exemplarily modern. 

16.29. We now find ourselves in possession of a concept of Number 
that subsumes as particular species the natural whole numbers, the 
whole positives and negatives, the rationals, the reals, and the ordi­
nals.6 We have overcome the modern resistance to a unification of 
the concept of Number ( see 1 . 8 ) .  But, in the process, we have already 
seen that this concept also subsumes other Numbers, that the histori­
cal deduction from the domain of Numerical ity is very much l imited. 
Rationals and reals cover the tota lity of Numbers of finite matter and 
only some Numbers of matter (0. It is as i f  our thinking has so far 
only brought to l ight a minute initial segment of that which being 
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proffers in terms of possible numerical access to pure multiplicities. 
The future of the thinking of Number is l imitless. 

16 .30 .  Infinitesimals 
We remarked in 16.22 that it would be possible to find a Number N 
at once smaller than 0) and larger than al l  the fin ite ordinals whose 
l imit is 0). This Number could perhaps be said to be ' infinitely close' 
to 0), and it puts us on the way to a concept of infinitesimal Number. 

The idea of infinitely small number, freely employed by seventeenth­
and eighteenth-century mathematicians, was dismissed in the n ine­
teenth century for its obvious inconsistencies. It was replaced by the 
concepts of the l imit (Cauchy) and of the cut (Dedekind) .  It reap­
peared around thirty-five years ago, in the singularly artificial, but 
consistent, context of the pure logic of models :  Robinson's non­
standard analysis.7 In the domain of Numbers, ' infinitely small 
numbers' or infinitesimals abound in the most natural fashion. It is 
by means of them that we will complete this diminutive journey 
through the enchanted kingdom of Numbers. 

1 6.3 1 .  Consider the Number i = (0), (0 ) ) ,  whose matter is 0) and 
whose form, the singleton of the void, has the void as its only element. 
It is a positive Number, since 0 is in its form. 

Now this positive Number, even if its matter is the same as that 
of real Numbers, is smaller than every positive real Number. 

In fact, if a real Number is positive, 0 is in its form, as is the case 
for i: 0 does not discriminate between i and a positive real Number. 
Al l  the whole Numbers other than 0 being in the residue of i, the 
discriminant of i and a rea l Number R wi I I  be the first whole Number 
apart from 0 to figure in the form of R. Such a Number necessarily 
exists, s ince the defin ition of the rea ls  dictates that the form of R 
should be infinite. And, since this discriminant is in the residue of i, 
i is smaller than R. Therefore there exists a Number i such that 
0 <  i < R for every rea l  Number. This i is situated 'between' Zero and 
all rea l  numbers thought as Numbers. We will say that it is infinitesi­
mal for the rea ls .  

16.32.  General is ing this definition: We say that a set of positive 
Numbers, a l l  of the same matter, tends rationally towards Zero if, 
for every dyadic positive rational r, as close to Zero as you l ike, there 
exists a Number N ,  of the set s ituated between Zero and r. In other 
words: for every dyadic rational r, there exists N ,  belonging to the 
set such that 0 < N ,  < r. Note that the classic notion of 'tending 
towards' is here relativised to dyadic rationals .  In the l imitless domain 
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of Numbers, we must indicate wh ich scale of measurement is being 
employed, because, as we will see, it is always possible to find a sti l l  
finer scale. 

It is obvious that the set of rea l positive Numbers tends rational ly 
towards Zero. Other sets of Numbers can be found which tend ratio­
nally towards Zero, for example positive Numbers of the type 
( S(co), (O,  . . .  ) ) ,  whose matter is S (co) and whose form contains at 
least O. 

We can say, then, that: 

A Number is infinitesimal for a set of Numbers that tends rationally 
towards Zero if it is: 

- of the same matter as the Numbers of the set; 
- positive; 
- smaller than all the Numbers in the set. 

So it is that the Number (co, (O ) )  is infinitesimal for the set of rea l  
Numbers . On the other hand,  there is no infinitesimal for the set 
of Numbers ( S (co) , (O,  . . .  ) ) ,  precisely because this set contains the 
very Number ( S (co) , (O ) )  that is the smal lest positive Number of 
matter S(co) .  

The limiting of the concept of infinitesimal to Numbers of the same 
matter as the Numbers of the set that tends towards Zero is necessary 
because, if this restriction were not in place, there would be as many 
in{initesimals as we wished. It would suffice to augment the matter: 
the Number (S (co) , (O ) )  is positive, and it is certainly smaller than every 
positive Number whose matter is co. In particular, it is smaller than 
the infinitesimal i = (co, (O ) ) ,  because the discriminant is co, which is 
outside the matter of i and in the residue of ( S (co) , ( O ) ) .  We see to what 
extent our concept of the infinitesimal is relative: the density of order 
over Numbers means that, however 'relatively' small a positive 
Number might be, there sti l l  exists an inconsistent multiplicity of 
Numbers situated between it and Zero. 

We can, if we wish, retain the classic definition: every positive 
Number smaller than every positive rea l is infinitesimal .  But then we 
will see the infinitesimals grow and swarm uncontrollably. The 
'shores' of Zero contain 'as many' Numbers as the entire domain of 
Numbers. Because, at the point where multiple-being as such incon­
sists, the notion of 'as many' loses all mean ing. 

16.33 .  Cuts of cuts 
Take the Number C = (co, (0, 1 ) ) ,  whose matter is co and whose form 
is l imited to the wholes 0 and 1 .  This Number is not real ,  s ince its 



1 80 ONTOLOGY: DEFINITION. ORDER. CUTS. TYPES 

form is finite. It is positive, since 0 is in its form. How can it be 
situated amongst the reals, to which its matter belongs ? 

A positive rea l which does not have 1 in its form is certainly 
smaller than C: the discriminant is 1, which is in the residue of such 
a real and in the form of C. 

A positive real which does have 1 in its form is certa inly larger 
than C. For al l  whole numbers larger than 1 are in the residue of C, 
whereas some of them are certa inly in the form of a real ,  s ince this 
form is infinite. The d iscriminant will be the smallest whole larger 
than 1 to be in the form of the real ,  and, since it is in C's residue, C 
wil l  be smal ler. 

C therefore is situated precisely between the reals which have 1 in 
their residue and the reals  which have 1 in their form. Now these two 
classes operate a partition into two of the positive reals, a partition 
which is ordered (a l l  the positive reals which have 1 in their residue 
are smal ler than all the positive reals which have 1 in their form) .  We 
can, then, perfectly lodge a Number 'between '  two disjoint classes of 
reals, in the caesura of a partition of reals .  And, since the reals are 
themselves cuts of rationals, the Number C wil l  be a cut of cuts . 

Genera lly speaking, given an organised partition into two of a set 
of Numbers 'of the same type', that is to say, defined by cuts or 
canonical presentations having this or that property (as we saw in 
defining the rea ls ) ,  we wil l  cal l  a 'cut of cuts' a Number of minimal 
matter situated in the caesura of the partition, being larger than al l  
those in the lower segment and smaller than al l  those in the higher 
segment. The Number (00, (0, 1 ) ) is  a cut of cuts in the numerical type 
'positive rea l  Numbers ' .  

The existence of cuts of cuts attests once more to the infinite capac­
ity of Numbers - as coalescent as they might seem - for cutting at a 
point the ultra-dense fabric of their consecution . 

16 .34.  So many other Numbers to visit and to describe! But works 
that take delight in this are beginn ing to appear. And the phi losopher 
is not defined by curiosity; the j ourney is not a disinterested one. The 
phi losopher must, before leaving the k ingdom convinced that every 
number thought of in its being is a Number, descend back down to 
calculation . Or, rather, to the existence of calculation, because the 
phi losopher is not a calculator either. But these numbers, from which 
our soul is knitted, the phi losopher wishes to render over entirely, 
even as regards the derivation of their operational mechanism, to the 
immemorial and effectless transparency of Being. 
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1 7  

Natural Interlude 

1 7. 1 .  The domain of ordinals ( and of cardinals )  holds an extreme 
charm for thought. A proof by affect - by affection , even - of what 
I claim here, is that, on reflection, this charm is that of Nature itsel f: 
an abundant diversity and, at the same time, a mute monotony. 
Nothing is the same, everything goes to infinity, but one hears a fun­
damental note, a basso ostinato, signal l ing that these myriads of 
multiplicities and forms, these complicated melodies, proliferate 
the repose of the identical .  If poets ' metaphors take as their 
reference the sky and the tree, the flower and the sea, the pond and 
the bird, this is because they would speak this presence of the Same 
that the unlimited appearances of nature veil and reveal .  In the 
same way, the ordinals, stil l s ingular in the infinity of their infin ite 
number, in the inconsistency of their All ,  also repeat the transitive 
stabil ity and the internal homogeneity of natural multiples, those 
multiples that they allow to be thought in their pure being. It is hard 
to tear oneself away from the intellectual beatitude brought on by 
the contemplation of the ordinals, one by one and as a 'set' . I think 
of the great Indian mathematician Ramanujan, I who held each whole 
number to be a personal friend. He was invested by this poem of 
Number, of which the Poem of nature is the symmetrical counterpart 
with in language. He did not like to construct proofs, but rather, as 
a dreamer of the ordinal s ite, to draw in it with curves of recognition, 
which his col leagues regarded with some surprise. Coming from afar, 
in al l  senses of the word, he was not accustomed to our severe modern 
distinctions. He saw numbers directly for what they are:  natural 
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treasures, where being lavishes its multiple resource and its fastidious 
identity in the same gesture in which, for the poet, it arranges the 
'correspondences ' of sensibi l ity. 

1 7.2.  We have at our disposal a concept of Number, and we know 
that this concept subsumes our traditional numbers. Wholes, ratio­
nals, reals, ordinals, thought in their multiple-being, are Numbers. 
It  must now be shown - a sl ightly less rewarding task - that this 
concept subsumes our traditional numbers not only in their being, 
but also in their operations. As far as we may be from that sensibil ity 
that is ruled by counting, it must nevertheless be shown that it is 
possible to count with Numbers, and that th is counting coincides, 
for the classical types of Numbers, with ordinary counting. We must 
cover algebra, addition , multiplication, etc . I f  we did not, then who 
would believe us when, speaking from the sole point of view of being, 
we said that these Numbers are numbers ? 

1 7.3 .  What is meant by 'operation', or calculation, is the consider­
ation of 'objects' upon which one no longer operates one by one, but 
at least two by two: the sum of x and y, the d ivision of x by y, etc. 
And, as the matter of Number is made of ordinals, it is to be expected 
that we have to deal  with , to think, pairs of ordinals .  So we wil l  be 
happily detained for a few more moments in the enchanted domain 
of natural multiples. This whole interlude is dedicated to some reflec­
tions and propositions about pairs of ordinals, ordinals taken two by 
two. And, as we shal l  see, these couples are also totally natural :  we 
can connect them back to 's ingle' ordinals via a procedure which in 
itsel f  holds a great charm. 

1 7.4. We wil l  speak of ordered pairs of ordinals, which we denote 
by (W" W2). 'Ordered' meaning that one takes into consideration the 
order of the terms in the couple - we wil l  thus speak of the first term, 
W" and the second, W2 - which wasn't the case in our concept of 
the simple pair, denoted by (e"e2 ) (compare 7.7), which was a pure 
'gathering together' of two terms regardless of their order. Or, in 
other words: if W ,  and W2 are different, then the ordered pair 
(W"W2) is not the same thing as the ordered pair (Wz,W, ). In order 
better to distinguish the simple pair from the ordered pair, we wil l 
call the latter a couple. 

We can also al low 'couples' of the type (W " W, ). In such cases, W, 
occupies both the first and the second place. 

The concept of ordered pair, or couple, plays a decisive role in 
mathematics: it underlies all thinking of relations and of functions. 2 
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It can be reduced to a figure of the pure multiple, testifying to the 
fact that relations and functions do not depend on any sort of addi­
tional being apart from the multiple, that there is no ontological dis­
tinction between bound objects and the bond which binds them. But 
we wil l employ the concept here in its naiVe sense. 

17.5 .  We wil l  call maximal ordinal of a couple (WhW2), and denote 
by Max ( WhW2») ,  either the larger of the two ordinals W I  and W2, 
if they are different, or, if the couple is of the type (W h WI ) the s ingle 
ordinal WI  that figures in it. You are reminded ( see 8 . 10 )  that ordinals 
are totally ordered by belonging: if WI and W 2 are different, then one 
is necessarily smaller than the other ( belongs to the other) .  

This  most elementary notion of the maximal term of a couple wi l l  
play a crucial role in what fol lows. It is important to get a firm grasp 
of it. 

17.6. Take a couple of ordinals (WhW2), which we will denote by 
Ch and another couple (W3,W4), which we will denote by C2•  We 
will define an order-relation between these couples in the fol lowing 
way. We say that CI is smaller than C2 and write C I < C2, i f  one of 
the three fol lowing conditions i s  satisfied: 

1 The maximal ordinal of the couple C2 is equal to the maximal 
ordinal of the couple C 1 • In other words : i f  Max (Cd E Max(C2) ,  
it is always the case that C 1 < C2• 

2 The maximal ordinal of couple C 1 is equal to the maximal ordinal  
of the couple Cz,  but the first term of the couple C I  is smaller 
than the first term of the couple C2 • In other words, in a case 
where Max( Cd  = Max(C2 ) ,  if WI E W3, then C 1 < C2• 

3 The maximal ordinal of the couple C I  is equal to the maximal 
ordinal of the couple C2, and the first term of the couple C I  is 
equal to the first term of the couple C2, but the second term 
of C 1 is smaller than the second term of C2• In other words, 
Max(Cd = Max(C2 ) and WI = W3, but W2 E W4• In this case, 
CI < C2• 

Evidently, if none of these three conditions are satisfied, then the 
couples C 1 and C2 must be identical :  they have the same first term 
and the same second term. A contrario, i f  two couples of ordinals 
are different, either one is smaller than the other, or the other is 
smaller than it: the relation is total. 

This order follows directly from employment of the operator 
Max(C) ,  or, if  this yields only an identity, from the comparative 
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examination, in this order, firstly of the first ordinal of each couple, 
then, i f  this examination too yields only an identity, of the second 
ordinal of each couple. The maximum trumps the first term, and the 
first term the second. 50me examples: 

• (6 ,0) is smal ler than (0,7), because its maximum is 6,  which is 
smaller than the maximum of the latter, which is 7; 

• (0,00) is smaller than ( 1 ,00), because, their maxima being identical 
( it is (0), the first term of the former, 0, is smaller than the first 
term of the latter, 1 ;  

• (5(00) ,00) is sma ller than (5(00),5( 00) , because, their maxima being 
equal ( they are both 5(00) ,  the successor of (0) and their first term 
l ikewise ( it is 5 (00) in both cases ) ,  the second term of the first 
couple, which is 00, is smaller than the second term of the other, 
which is 5 (00) .  

Note that the couple (0,0) is the smal lest couple of a l l ,  since its 
maximum, its first term and its second term are all equal to 0, which 
is itself the smallest ordinal .  

It is also clear that couples form an inconsistent multiple, since, 
already, the ordinals themselves cannot form a set. In speaking of 
'the' couples, but also of 'the' ordinals, or 'the' Numbers, we must 
always remember that we cannot attribute any property to whatever 
this 'the' designates : there is no question of a thinkable, or present­
able, tota lity. In particular, if  there exists a minimal couple for the 
order that we are going to define ( it is the pair (0,0») ,  there certainly 
is not a maximum couple for this order. 

1 7.7. I leave the reader the task of showing that the relation between 
couples that we have j ust defined is a genuine order-relation (and 
therefore, essential ly, transitive: if  C] < C2 and C2 < C), then 
C] < C) ) .  

Far more interesting is the fact that i t  i s  a well-ordered relation. I 
have given the definition of this in 6.4 :  given any set whatsoever of 
terms well-ordered by a relation <, there exists one (and one only) 
element of that set that is minimal for the order-relation, which is the 
smal lest element of that set. 

Take any (non-empty ) set E of couples of ordinals - that is, a set 
all of whose e lements are couples of ordinals. Consider all those 
couple elements of E whose maximum is minimal for E. In other 
words al l  the couples C E E such that Max(C)  is the smallest ordinal 
to figure in the elements of E as maximum of a couple. This is possible 
by virtue of the principle of minimality that characterises the ordinals 
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( see 8 . 10 ) .  Given the property 'being a maximal ordinal in a couple 
C which belongs to E', there exists a smallest ordinal to satisfy this 
property. We thus obtain a subset E' of E, a l l  of whose elements C 
have the same minimal maximum. Note that, because of the first 
of the conditions defining the order of couples, all the elements of 
E' are smaller than all the elements that remain, that are in E-E' 
( i f  any) .  

Now consider, in E', the set of couples whose first term is minimal 
for E' .  In other words, a l l  the couples C = (Wt .Wz) such that WI is 
the smallest to be found in all the first terms of the couples in E'. 
This is possible for the same reason as before: it suffices to consider 
the property 'being an ordinal that figures in a couple in E' as the 
first term', and to take the minimal ordinal for this property . We wil l  
thus obtain a set E" of couples having the same maximum ( because 
they are in E' ) and the same first term (minimal for E' ) .  Note, in 
considering the second of the conditions defining the order of couples, 
that all the elements of E" are smaller than all the elements that 
remain, which are in E' _E", which themselves are all smaller than 
the elements of E-E'. 

There is a sort of concentric embedding, where the couples of each 
inner circle are smaller than those of the exterior boundary. 

Consider, finally, in E", the property 'being an ordinal that figures 
in second position in one of the couples in E"' . There is a minimal 
ordinal for this property. But, this t ime, the set obtained consists of 
one couple only. This i s  because, in E", the first term of the couples 
is fixed ( it is the minimal first term for the couples in E') .  In fixing 
the second term (as minimal for this place ) ,  one couple is entirely 
determined. But the others are themselves smaller than all the couples 
in E'-E", which are smaller than the couples in E-E'. So the minimal 
couple obtained in E" is in fact minimal in E-QED. 

This property of minimality for the order of couples of ordinals 
grants us three essential freedoms: 
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1 Given a couple C, it is possible to designate the unique couple 
that will come directly after it in the order we have defined. To 
do so, it suffices to consider, in  a suitable set that contains C, the 
subset of those that are larger than it. This subset wil l have a 
minimal element, which is the smallest one to be larger than C, 
and is thus the 'successor' of C. 

2 If a property of couples defines a set ( the set of couples which 
possess that property ) ,  then we can safely speak of the smal lest 
couple in that set, and therefore of the smallest couple to possess 
that property. 

3 Given a set of couples, we can speak of the upper bound of that 
set, as we can for sets of ordinals ( see 12 . 16 ) :  it suffices to consider 
the smal lest couple that is larger than all the couples in the set. 

'Well-orderedness' al lows thought to move between interior minimal­
ity and exterior maximality: the smallest of a given set, and the first 
(outside) to be larger than al l  those in that set. The trap is to imagine 
that one thereby gains access to internal maximality: this is not at all 
the case because, for couples as for ordinals, that which goes to the 
l imit is not internal ly maximisable. 

1 7.8 .  We are speaking of succession and l imit. Here we return, let 
us remark, to the disputations of chapter 9. Discovering the kinship 
between ordinals and couples of ordinals was our latent motive. 

1 7.9.  Let's begin with an example. What can we say of a couple of 
the form (W "S(W2) , where WI is any ordinal whatsoever apart from 
0, and where S (W2 ) is the successor of any ordinal W2 ? Everything 
depends on the maximal ordinal in the couple. Suppose that WI  is 
maximal and thus that S(W2 ) E WI .  If we compare the couple to all 
others that also have WI as their maximal ordinal ,  we see that it i s :  

- larger than al l  those where W I only comes in second position in 
the couple (primacy of first position, condition 2 of the ordering 
of couples ) ;  

- larger than a l l  those which, in second position, have an ordinal 
smal ler than S(W2 ) (third condition of order) ;  in particular, it is 
larger than the couple (W"W2); 

- smaller than al l  those which have, in second position, an ordinal 
larger than S(W2 ) .  In particular, it is smaller than the couple 
(W "S( S(W2) )), supposing that S (S (W2 ) )  remains smaller than W I .  
thus leaving WI 'S  maximal status intact. But let's assume this 
hypothesis . 
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It seems clear from this that the couple (WhS(W2) , given the 
assumed hypothesis, interca lates itself exactly between the couple 
(WhW2) and the couple (WI ,S (S (W2 ) ) ). More specifically, we can say 
that it succeeds the first of the two couples. 

If, on the other hand, we take the couple (W) ,L) where L is a l imit, 
and sti ll suppose that WI is maximal in  the couple, we cannot deter­
mine a couple that it succeeds. This couple is certainly larger that all 
the couples of the form (WhW2) where W2 is smaller than L (th ird 
condition of order) .  But L, a l imit ordinal ,  precisely does not succeed 
any of the W2 in question. There is therefore only one possibi l ity : the 
couple (WhL) is the upper bound ( see N6) of the set of couples 
(WhW2), where W2 E L, with W I ,  of course, being maximal - that 
is to say, larger than L. We can also say that the couple (WhL) is the 
limit of the couples (WhW2) for W2 less than L. 

Finally, take the couple (0,S (W2 ) .  The Max. of this couple is 
evidently S(W 2). But it is certainly the smallest couple to have this 
Max. In fact, its first term is minimal ( i t  is 0), so every couple C 
where Max(C)  = S(W2)  and where the first term is not ° - therefore 
every couple of this sort other than our example - is greater 
than it. 

Being the smallest couple whose Max. is S (W2 ) ,  our couple must 
succeed the ' largest couple' - if it exists - whose Max. is immedi­
ately inferior. Note that these notions of ' larger' and ' immediately 
inferior' can be disrupted by the intervention of limit ordinals .  Al l  
the same, this  is not the case in our example: s ince the Max. of 
our couple is S (Wz ) ,  an immediately inferior Max. exists: it is W2. 
What would be the largest couple whose Max. is W1 ? Obviously 
that couple whose first term is maximal (condition 2 of order) .  But 
the first term of a couple whose Max. is W2 attains its maximum 
when it is equal to W2• For, i f  it surpasses W2, the Max. changes . 
So the couple that immediately precedes (0,S (W2 ) in the order of 
couples is (W2,W2). We can also say that (0,S (W2) is the successor 
couple of (W2,W2). 

17. 10. What we real ly want is to 'ontologise' couples of ordinals, as 
we did for ordinals: find an intrinsic characterisation, not bound to 
order alone, of successor couples and l imit couples. The examples in 
the previous paragraph wil l  guide us. 

17. 1 1 .  Let's begin with couples conta ining 0 .  
We have remarked that couples of the form (O,WI ), for a l l  WI other 

than 0, are the smallest ones whose Max. is W I ' This a l lows us to 
characterise them immanently: 
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1 A couple of the form (O,S (Wd) is always a successor ( it succeeds 
(WhWI » ) .  Thus the couple (0, 1 )  is a successor ( it succeeds the 
minimal couple (0,0») . 

2 A couple of the form (O,L) is always a l imit: it is the upper bound 
of the sequence of couples (WI ,Wz) where WI and Wz pass into 
the l imit ordinal L. So that the couple (0,00) is the l imit of al l  the 
couples (m,n) where m and n are finite ordinals ( and therefore 
natural whole numbers, see chapter 1 1 ) . 

Couples of the form (W hO) depend j ust as directly, as regards their 
intrinsic characterisation, on the nature of the ordinal W I :  

1 A couple of the form (S(W I ) ,0) is the smallest couple to have 
S (Wd as Max. in first position. It is larger than al l  those which 
have S (Wd as Max. in second position - that is, couples of the 
form (W2,S(Wd) where Wz is smaller than S (Wd.  In fact it 
comes j ust after the largest of these couples, which latter wil l 
evidently have the largest possible first term to conserve S (Wd's  
status of maximum in second position. This  largest first term is  
WI . the immediate predecessor of S (Wd. The largest of the 
couples which come before (S(W I ) ,0) is therefore the couple 
(W"S (Wd). We can conclude: every couple of the form (S(WI ) ,O) 
is a successor. Thus the couple ( 1 ,0) is a successor ( it succeeds 
(0, 1 » ) .  

2 A couple of the form (L,O) is larger than every couple of the form 
(W"L) where WI is less than L. But there is no such couple that 
is larger than all the rest, because there is no W I that is 'closer' 
to the l imit ordinal L than all others ( see 9 . 18 ) .  The couple (L,O) 
is, moreover, smaller than all the couples of the type (L,WI )  where 
WI is not 0. In a sense, it makes a cut between the couples (W" L) 
and the couples (L,O). All the same, amongst the latter there is a 
minimal couple, which is the couple (L, l ), and which therefore 
succeeds (L,O). Here again we find the striking dissymmetry, char­
acteristic of the ordinals, between minimality (guaranteed) and 
maximal ity (which presupposes succession ) .  The couple (L,O) is 
the l imit, or upper bound, of the sequence (W " L) for WI E L, 
and it immediately precedes the couple (L, l ). It creates an infinite 
adherence to its left, or 'on this side' of it, and the void of one 
single additional step to its right, beyond it. 

1 7. 12 .  Let's now turn to 'homogenous' couples of the type (S hS2) or 
(L"L2). Everything wi l l  once more depend upon the Max. of these 
couples: 
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• If 5 1  or L I  are the Max.,  the problem is trivial : (s "sz) is a successor. 
Just a moment of reflection wil l  show that it comes just after the 
couple constituted by 51 (the Max . )  and the predecessor of 52 . As 
for (L I ,L2), it is surely the l imit of the sequence of couples of the 
type (L"WI ), where WI traverses the elements of the ordinal Lz. 

• If Sz or L2 are the Max., things are not much more difficult . It is 
certain that (5 1 ,52) is a successor: it comes j ust after the couple 
constituted by the predecessor of 51 and by the Max. 52 . As for 
(L"L2), it is assuredly the l imit of the sequence of couples (W"Lz), 
where WI traverses the elements of L" from 0 'up to' L I .  

1 7. 1 3 .  We wil l finish with mixed couples. The method does not 
change at al l :  

• If, in a couple of the type (s ,L) or (L,s), it is L which is the Max.,  
these couples are successors: they come j ust after the couples 
obtained by replacing 5 with its predecessor. 

• If 5 is the Max. ,  the couples are l imits of the sequences of couples 
of the type (s,W I )  or (W"s), where WI traverses the elements of 
the l imit ordinal. 

17. 14. Finally, we now have a table of immanent characterisations 
of couples as follows: 

Type Max. Example Character 

(0,0) ° Unique Special 
(O,s) S (0 , 1 ) Successor 
(O,L) L (0,00) Limit 
(s,O) s ( 1 ,0) Successor 
(L,O) L (00,0) Limit 
(S"S2) S l  (2, 1 ) Successor 
(S I S2) S1 ( 1 ,2) Successor 
(L"L2) L I (00 , ,00) Limit  
(L"L2) L2 (00,001 ) Limit 
(s,L) s (S( oo),oo) Limit 
(s,L) L ( l ,oo) Successor 
(L,s) s (oo,S( oo) Limit 
(L,s) L (00, 1 ) Successor 

This table has a perfect symmetry, broken only by the inaugural 
couple of the void with itself, the ontological basis of the whole 
construction. 



1 92 OP ERATIONAL DIMENSIONS 

1 7. 1 5 .  It is entertaining to visualise the beginning of the sequence of 
ordinal  couples. 

We have already seen that after the couple (0,0) comes the couple 
(0, 1 ), then the couple ( 1 ,0). One can quickly see that it is ( 1 , 1 )  that 
succeeds (1 ,0), s ince it is the largest couple whose Max. is 1 .  Coming 
next is (0 ,2), which is, as we have remarked, the smallest couple 
whose Max. is 2 .  The readers can exercise themselves by calculating 
the rest. If we draw the succession of couples onto a squared back­
ground, using the horizonta l axis to represent the ordinal that occu­
pies the first place and the vertical to represent that which occupies 
the second, we obtain the fol lowing: 

<0 , 1 >  < 1 ,0> <2,0> <3,0> <4,0> 

What we see in this diagram is that the route through the couples 
forms a kind of 'chain' which evidently could be projected onto an 
ordinal axis . At any given moment we know how to 'produce' the 
nth couple, as soon as its predecessor has been determined. It is 
tempting to formalise th is intuition by establish ing a term-by-term 
correspondence between ordinals and couples of ordinals, s ince we 
have seen that the 'passage to the l imit' represents no obstacle to our 
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doing so: there is a concept of the l imit couple, structural ly d istinct 
from the successor couple. This magnificent construction, which proj­
ects couples ( representable on a plane or a surface)  onto the l inearity 
of their constituents (s ingle ordinals ) ,  is a triumph of ontology. It 
shows that there is no more in the double than in the single. It l in­
earises the divergence of twoness. 

1 7. 16. Our underlying motive here is to show that couples of ordi­
nals behave ' l ike' ordinals themselves. The simplest way is to establish 
between couples of ordinals and ordinals a biunivocal correspon­
dence (see 4.5 ) .  However, it is  dubious, absurd even, to speak of a 
correspondence or a function between two inconsistent multip licities. 
Neither the ordinals nor the ordinal couples are sets . How can we 
justify comparing or l inking these two untotal isable collections ? 

We have given the principle for the forcing of this impasse in 
chapter 1 0: we must, if we can, define the correspondence between 
the ordinals and the couples via transfinite induction, or recurrence. 
The function will only be defined at successive levels, without us 
having to consider the 'a i ls '  between which it operates. 

17. 1 7. Let (((W"W2») be the function we wish to define and which, 
to every couple of ordinals, wil l  make correspond biunivocally an 
ordinal: (((W"W2») = W3• 

We are firstly going to root the function ( securely in its first value, 
which wil l correspond to the smallest of the couples, the couple (0,0). 
Refer back to chapter 10 for the whole of this procedure. 

We posit explicitly: 

R ULE 1 (((0,0») = 0. 

We wil l then examine the case of successor couples (compare the 
typology of couples in 1 7. 14 ) .  Let C2 be a couple which succeeds 
couple C" which we wil l  denote - in an extension of the notation 
adopted for the ordinals - by C2 = S (Cd .  The simplest way is to make 
correspond to the couple, via (, a Cl, which is the successor of couple 
C" the successor ordinal of the ordinal which corresponds, via (, to 
C , :  we make the ordinals succeed 'in paral lel '  to the succession of 
couples. We thereby respect the basic idea of induction, or recurrence: 
supposing the function ( to be defined for the couple C" we define it 
by an explicit rule for the couple C2 which succeeds C , .  We therefore 
posit: 

R ULE 2 ((C2) = ((S (C d )  = S(((Cd ) .  
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let's move on to l imit couples. We suppose the function ( to be 
defined for a l l  couples that precede a l imit couple CL. To al l  these 
couples, the function ( makes correspond an ordinal W = ((C) .  The 
idea is evidently to take, as value of ( for the l imit couple Cl, the 
ordinal that comes just 'after' all of the ordinals thus associated, via 
(, with the couples that precede CL. We know of the existence of 
this ordinal that comes j ust 'after' a set of ordinals ( see N6): it is 
the upper bound of that set, denoted by sup. We posit then that 
((Cl) is the sup.  of all the ordinals (( C )  for the set of C smaller than 
CL. So: 

R ULE 3 ((Cl) = sup. (((C ) ) ,  for C < CL. 

The inductive definition of ( is now complete, since we have 
covered the three cases - the minimum ( D,D)) ,  successors and limits 
- defining ( via an explicit rule which makes its value depend upon 
the values obtained 'below' the term in question . 

1 7. 1 8 .  A few examples. 
What, for example, is the value of (((D, 1 ) ) ?  We have seen that the 

couple (D, l )  is the successor, in the order of couples, of the couple 
(D,D). We apply rule 2: (((D, l } )  = S((((D,D} ) ) .  But rule 1 indicates that 
(( (D,D}) = D. Then it must be: (( (D, 1 } ) = SID ) = 1 .  

What is the value of (( (D,ro} ) ?  We have seen that the couple (D,ro) 
comes j ust after the set of a l l  the couples (m,n), where m and n are 
fin ite ordinals ( the natural whole numbers ) .  Now it is clear that ( 
associates a finite ordinal  with each of these couples, s ince a successor 
couple wi l l  be associated with the successor of the ordinal that cor­
responds to its predecessor, and since one begins from D. To couples 
of the type (m ,1t) wil l  correspond the sequence D , 1 ,2, etc . Conse­
quently, (( (D,ro)) wi l l  have as its value the upper bound of all the finite 
ordinals, that is, the first infinite (or l imit) ord inal, which is to say roo 
Thus (((D,ro} )  = roo 

These elementary examples demonstrate that we are indeed in a 
posi tion to calculate ( for any couple whatsoever: it is enough to 
'progress' the length of the well-ordercdness of couples. The value 
for the first couple being fixed, rules 2 and 3 allow us to know the 
value of ( for a couple C on the basis of the values which ( assigns 
to the couples which precede it. 

1 7. 1 9. That our function (, defined inductively with these three rules, 
is defin itely biun ivocal  merits verification, whatever evidence we may 
already have on this point. 
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It must first of al l  be confirmed that ( is injective, or, in Dedekind's 
terms, distinct ( see 4.5 ) .  In other words that, if couple C 1 is different 
from couple C2, then ordinal ((C d  is different from ordinal  ((C2 ) .  We 
can assure ourselves of this by casting our eye over the rules of induc­
tion. I f  two couples are different, they are ordered; say, C 1 < C2 • The 
value of ((C2 ) depends on the value of ( for the couples which precede 
it, and it is different from al l  of these values. Specifically, it is different 
from the value of ( for C I .  which comes before C2 • We can therefore 
be sure that C 1 ...;:. C2 � ((C d ...;:. ((Cz ) .  Function ( is injective. 

In fact, we have a stronger property here: the function 'projects ' 
the order of couples into the order of ordinals (technically, it is a 
homomorphism from the order of couples into the order of ordinals ) ,  
such that, if  C 1 < C2, then ((Cd E ((C2 ) .  For, if Cz comes after C I . its 
value for ( (which is e ither the successor of the value of the couple 
which precedes it, or the upper bound of the values of ( for a l l  the 
couples which precede it) in any case surpasses the value of ( for C 1 • 
Consequently: C 1 < C2 � ((C d  E ((C2 ) .  

I t  remains to  be  shown that function ( is surjective, a modern word 
meaning that every possible value of the function is effectively ful ­
fil led. In other words that, for every ordinal W, there exists an ordinal 
couple C for which ((C) = W. 

Suppose that an ordina l  W exists whose value for function ( is not 
a couple C. Then there exists a smaller such ordinal (principle of 
minimality ) ,  say w. Thus al l  ordinals smaller than w do correspond, 
via, (, to a couple. We can see then that w must necessari ly also, 
contrary to the hypothesis, correspond, via (, to a couple. Because, 
if w is a successor, which means that w = S (wd and ((C) = W I . it must 
then be ( rule 2 of the inductive definition of f) that (( S (C ) )  = S (wd = 

w. And, if w is a l imit, then, since al l  the ordinals which precede w 
correspond, via (, to couples, w itself appears as the upper bound of 
all those ordinals, and thus, from rule 3 ,  its value for ( wil l  be the 
couple that comes 'after' al l  the couples corresponding to ordinals 
smaller than w. 

So, finally, ( is indeed a biunivocal correspondence between couples 
and ordinals. This correspondence is, in addition, an isomorphism 
between the structure of order of couples (via the Max. ,  the first term, 
and then the second term) and the structure of order of the ordinals 
( belonging) .  Suffice to say at this point that the ordinal couples are 
a sort of 'doubled ' image of single ordinals . Taken 'two by two' ,  
nature is sti l l  s imilar to itself. Nature is its own mirror. 

1 7.20. These wanderings in nature through the looking-glass of the 
double teach us: 
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- that there exists a well-orderedness over couples of ordinals, such 
that these couples obey, as do ordinals, the principle of 
minimality; 

- that we can speak, as for the ordinals, of successor couples and 
l imit couples, and that these attributes can be uncovered by imma­
nent examination alone of the structure of the couples which 
possess them; 

- that there exists between couples and ordinals a function ( which 
has all the characteristics of a biunivocal correspondence, except 
that the tota l ities between which this function operates are incon­
sistent, so that ( must be defined by transfinite induction; 

- that this function ( defines an isomorphism between the structure 
of order of couples of ordinals and the structure of order of the 
ordinals, so that C] < Cz implies that ((Cd  E ((C2 ) .  

I n  the mirror o f  the double, nature perseveres i n  al l  o f  its formal 
comportments. 

Identical means would al low us to establ ish that trip lets of ordi­
nals, of the form (WJ ,WZ,W3), have the same properties as couples 
do, and in particular that they are in biunivocal correspondence with 
the single ordinals .  The same goes for n-tuplets of ordinals of the 
form (WbWZ, • • •  ,Wn). In matter, it is only the first step that costs. 
Doubled, nature maintains its order. Redupl icated in fin ite series as 
long as you l ike, nature persi sts in maintaining its first identity. Stabil­
ity, homogeneity, order, minimality, the ontological hiatus between 
successors and l imits: a l l  of this remains when the simplicity of the 
ordinal  is multipl ied within the l imits of the finite. Nature is its own 
hal l  of mirrors . 

1 7.2 1 .  Mallarme wrote : 'Nature is there, it wi l l  not be added to, . 3 

And it is a fact that, if one adds to nature, and even if one adds and 
adds, and so on repeatedly, the domain of natural multiples attests 
unabated to the pregnancy of the Same. This is what we grasp in 
every experience of the natura l :  that ramified growth, reproductive 
division, far from suggesting to us the Other, reposes in itself, in the 
eternal seat of its order. 

Now, we know that every operation, every algebra, is concerned 
with a doubl ing or tripling of the terms upon which one operates. 
We add two numbers to obtain a third, calculate the smal lest 
common divisor of two numbers, arrange in a finite sequence the 
components of a polynomial . . .  All these d iscipl ines of reckoning 
and a lgebra have as their substructure a fin ite l i sting of numerical 
marks. 
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If it is true that natural multiples, ordinals, furnish the matter of 
Number, we can understand why the possibility of operations, of 
algebra, of reckoning, finds its ontologica l guarantee in nature's 
capacity to maintain the identical within division. Beneath the appar­
ent variegation of schemes of reckon ing, the variety of operations 
and of algebraic structures, lies this perseverance of natural being, 
this immanent stabi l ity in finite serial ity. An operation is never any­
thing more than the mode in which o u r  thinking accords with 
Mallarme's maxim: if, without exposing ourselves to the dis integra­
tion of the Other, we can combine two Numbers - 'add ' one to the 
other - it is because nature, taken as double, added to itself, re­
attached to itself, maintains the immanent form of the multiple-beings 
through which it inconsists. 

An operation, a counting, an a lgebra, are only marks of our 
thought's being caught in the mirror-games which it pleases being 
to proffer, under the law of the Same to which natural multiples 
dispose it. 



1 8  

Algebra of Numbers 

1 8 . 1 .  We must final ly come to counting. 
Once its being has been fixed, the combinatory capacity of Number 

is a mere consequence. It arises from an investigative ingenuity as to 
the ways in which couples or triplets of Numbers can be l inked. But 
the source of these l inks is held completely with in the concept by 
means of wh ich Number is anchored in being. All that operations 
can do is to deploy - in the numberless domain of Number - the 
prodigal ity of being in its possible connections.  

Concomitantly, the difficulty resides in the choice of 'good' defini­
tions of the l inks, so that they should conform to the faci l ities of 
calculation: we wish the operations to be associative, for there to be 
a neutral element, inverses, and it would help i f  they were also com­
mutative. We would be even happier i f  operations combined well­
behavedly amongst themselves, with a di stributivity of one with 
regard to the other. To arrive at these results, Number must be scru­
tin ised and we must careful ly authenticate the links we wish to 
define. 

1 8 .2 .  The substantia l  results to be obtained through the ingenuity of 
operational definitions are as fol lows: 

1 We can define a first operation on Numbers named addition and 
denoted by +, which has the properties of a commutative group: 
- associativity: N t  + (N2 + N3) = (N t  + N2) + N3 (one can count 

'in any order' ,  and achieve the same result) ;  
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- a neutra l element (which is Zero) :  N ,  + 0 = N, ;  
- inversion (which is the symmetric counterpart ) :  N ,  + (-N , )  = 0; 
- commutativity: N ,  + N2 = N2 + N , .  

2 We can define on Numbers a second operation, named multiplica­
tion, and denoted by · ,  which has the fol lowing properties: 
- associativity : N ,  . (N2 · N3 ) = (N ,  . N1) · N3 ; 
- neutral e lement (which is the Number 1 ) : N , · l  = N , ;  
- existence of an inverse i (N)  for every Number different from 

Zero: N , · i (N d = 1 ;  
- commutativity: N , · N2 = N2 · N , .  

3 Multipl ication is distributive in relation to addition: N ,  . (N2 + N3 ) 
= (N , · N2 ) + (N , · N3 ) .  

These three operational considerations would lead u s  to  say that 
Numbers form a commutative {ield, i f  it were not for one problem: 
Numbers do not even form a set, because they are inconsistent. How 
can something be a field - which is supposed to be an algebraical ly 
defined entity - if  it cannot be counted as a multiple ? 

Therefore, prudently, we wil l  say only this: that every set consti­
tuted of Numbers whose matter is less than a given cardinal infin ity 
(therefore every set constituted from Numbers whose matter is 
bounded by a 'brute' fixed infinite quantity) can be given the structure 
of a commutative field. 1 What is more, as can be proved for the 
rationals or the reals, there are other sets of Numbers that are also 
commutative fields. Numerical inconsistency can be 'sectioned' into 
innumerable algebraic structures. 

These logica l caveats aside, the algebra of Numbers is the richest 
conceivable: its calculative capacities equal - for example - those with 
which the real Numbers furnish us ( in particular, it can be proved 
that every Number has a square root, which is not the case if one is 
operating, for example, in the field of rational numbers ) .  

1 8.3.  A result a t  once laborious ( in its procedures of verification ) and 
of key importance ( for the val idity of our concept of Number) is the 
following: operations defined on Numbers coincide with operations 
defined on 'our' numbers, if  the latter are thought in their being as 
Numbers. In other words: take two real numbers r ,  and r2 , taken in 
their usual algebraic sense. If the sum of r l  and r2, such as we know 
it, is the real number r3 , then the sum of r ,  and r2 such as it is  repre­
sented ' itself' in Numbers (with Numbers of matter finite or equal to 
0), see 16.28 )  - 'sum' being taken in the sense of the addition defined 
on Numbers - will be precisely the representative, within Number, 
of the number r3 . The same will go for multiplication, etc . More 
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technically, we can say that the field of the reals, as we know it in 
classical analysis, is isomorphic to the reals  thought as subset of 
Numbers. 

It is not, therefore, solely in their being that 'our' usual numbers 
can be thought of as singular types of Numbers, but also in their 
algebra. Our real Numbers are ultimately indistinguishable from rea l  
numbers. In particu lar, real Numbers constitute a complete ordered 
Archimedean field, which is the univocal customary definition of real 
numbers. 

It can be said, ultimately, that a l l  the dimensions and capacities of 
'historical '  numbers are reta ined by their presentative instance in the 
innumerable swarm of Numbers. Which confirms: 

- that the ontological essence of a number is nothing more than 
that which our thought apprehends it to be when it is determined 
as a type of Number; 

- that the operational or a lgebraic properties are only the effect of 
a correct determination , on the basis of natura l multipl icities, of 
the being of Number. 

We therefore find the programme of unification of the concept of 
Number (one sole concept which subsumes the natural whole 
numbers, the negative whole numbers, the rationals, the reals and the 
ordinals) to be wholly real ised, firstly in multiple-being, and then in 
the operational dimensions . 

It is now possible for us to speak freely of, and to submit to cal­
culation, entities previously devoid of any sense, l ike the sum of an 
ordina l  and a real number, or the division of a transfinite ordinal by 
a rational number, or the square-root of the division by three of an 
ordinal ,  etc. Incredible equations l ike: 

- wh ich, in the dispersed and lacunary historical theory of numbers, 
would have made absolutely no sense - in the unified framework of 
the concept of Number become perfectly meaningful algebraic formu­
lae, indicating certain procedures of calculation and definite results. 

Number th us founds in being the l itera l connection of what, 
under the disparate name of 'numbers' ,  had defined heterogeneous 
domains.  
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1 8.4. The definition of operations on Numbers is essential ly a techni­
cal  affair. Whoever wishes to follow it in a l l  i ts  detai l  is referred to 
the I iterature.2 Nevertheless, its animating spirit al lows a revision of 
concepts, a final passage through the Idea of Number. In particular, 
the systematic use of transfinite induction highlights the fact that 
Number, thought of in its being, is essential ly an infinite multiple (the 
section of a form from an infinite ordinal-matter) .  In the same way, 
the recourse to sub-Numbers of a Number in order to construct 
operations 'from below' attests to the importance of the fact that 
every Number can be presented as a cut of its low set and its h igh 
set ( see chapter 14) .  And again, it is by presenting the result of an 
operation as a cut ( see chapter 1 5 ) - that is ,  by util is ing the funda­
mental theorem - that we can handle induction. Lastly, the correla­
tion explored in chapter 1 7  between couples of ordinals and ordinals 
plays a major role in this whole process - as one might expect (s ince 
an operation connects two Numbers ) .  So as not to forego these reca­
pitulations in thought, we wil l  cover the essentials of the definition 
of addition . 

18 .5 .  The general idea is as follows: given two Numbers N I  and N2, 
we can make them correspond to two ordinals W I and W 2 simply 
by taking their respective matters, W I  = M(Nd and W2 = M(N2) .  We 
know that a certa in ordinal corresponds to these two ordinals via 
the biunivocal function (, which associates an ordinal with every 
couple (Wl ,W2) of ordinals ( see 1 7. 1 7) .  This ordinal wi l l  fix the 
'level' of definition of the additive operation: we wil l  suppose that 
addition is defined for all couples of Numbers N3 and N4 of matter 
W3 and W4, such that the ordinal that corresponds via ( to the couple 
(W3,W4) is smaller than the ordinal associated with the couple 
(WI ,W2). We then propose an explicit rule, wh ich wil l  define the sum 
N I + N2 on the basis of sums of the type N3 + N4, defined at a lower 
ordinal level .  

Now, such sums are given by the sub-Numbers of NI and N2 . A 
sub-Number, being a 'partition' of a Number for an ordinal smaller 
than its matter, has an inferior matter. 

We can then pass on to the next stage, which i s  the core of the 
construction. Take the Numbers NI and N2, of matter WI  and W2. 
Consider a sub-Number N I /W3 of N I ,  and a sub-Number Nz/w4 of 
N2. Now take the couples (W3 ,W2), or (WhW4)' I say that they are 
lower than the couple (WI ,W2), by the rules of order of couples, and 
remembering that W3 and W4 are respectively smaller than WI and 
W2 (see 1 7.6 ) .  This is an excel lent exercise for the reader, but see 
the note.3 
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As the function f is an isomorphism of the order of couples with 
the order of the ordinals, we will also have: 

f( W3 ,WZ» ) E f( W t .Wz») ,  

and 

f( W t .W4») E f(W"Wz) .  

Which is to  say that the ordinal level associated with couples 
of Numbers of the type (Ndw3,Nz), or (NhNz/W4) will always be 
lower than the ordinal level associated with couples of Numbers 
(NhN2). 

Given this fact, in order inductively to define the sum of N ,  and 
Nz, we can suppose defined sums of the type N dw3 + N2, or N ,  + 
Nz/w4, which pertain to a lower ordinal level .  We wil l  thus pass on 
to the definition of N ,  + N2 by formulating a rule which assigns the 
va lue of this sum on the basis of the various values between N, and 
Nz on the one hand, the sub-Numbers of N, and Nz on the other. 
The immanent concept of sub-Number wi l l  serve to underwrite the 
induction, wh ich fixes their ordinal level on the basis of a couple 
formed of the matters of the two Numbers under consideration. 

Finally, the strategy will mobil ise the fundamental theorem of the 
cut. We will begin with the low set and the high set of the two 
Numbers N, and Nz• We suppose defined the sums of each of the 
two Numbers with the sub-Numbers of the low set and of the high 
set of the other Number, according to a fixed combination. These 
sums can be assumed, because their ordinal level is lower. We can 
thus obtain two sets of Numbers, and the sum of N I and Nz wil l be 
the unique Number defined as cut of these two sets. 

1 8 .6. Inductive definition of the addition of two Numbers 
'Level zero' of the induction contains only the Number (0 ,0 ) .  It is  the 
only one to have ° as matter. We can th us posit: 

R ULE 1 (0 ,0 )  + ( 0 ,0)  = (0 ,0 ) .  

We wil l  now suppose that  addition is defined for al l  levels lower 
than an ordinal W, that is, all levels corresponding to Numbers N3 
and N4 (taken in that order) such that, their respective matters being 
W3 and W4, it is the case that f(W J ,W4 ) E W. 

Now take a couple of Numbers NI and Nz such that, their respec­
tive matters being WI and Wz, it is the case that f(W"Wz) = W. In 
other words a couple of Numbers belonging to ordinal level W. 
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We have remarked that al l  the couples of type N,  and Nz/w, or  
N /w and N2 ,  where N /w and Nz/w are sub-Numbers of N,  and N2, 
belong to ordinal levels inferior to those of the couple N ,  and N2, 
and therefore inferior to W. 

It follows that we can suppose defined al l  the additions of the type 
N, + Nz/w, or N dw + N2• 

We must agree on an important written convention here. We wil l  
write N ,  + Lo(N2)  for the set of Numbers constituted by a l l  the results 
of the addition of N ,  with each of the Numbers of the low set of Nz 
(the low set of N2 is constituted, remember, of a l l  sub-Numbers of 
Nz smaller than N2) .  If Lo(N2) is empty, the Number denoted by 
N ,  + Lo(N2) would be undefined (we wil l  not consider this in the 
calculations) . 

In the same way, we write N J  + Hi(N2 ) for the set of Numbers 
constituted by all the results of the addition of N, with each of the 
Numbers of the h igh set of N2 (the high set of N2 being constituted 
by all sub-Numbers of N2 larger than N2 ) .  The convention wi l l  always 
be not to bother writing this if Hi (N2)  is empty. 

We wil l  adopt the same notation to designate sets of Numbers which 
result from additions impl icated in Lo(N , )  + N2, or Hi (N , )  + N2. 

Addition will then be defined as fol lows: on the one hand we take 
the set of Numbers constituted by all the Numbers of Lo(Nd  + N2, 
together with al l  the Numbers of N ,  + Lo(Nz ) ;  on the other hand, 
the set constituted by al l  the Numbers of Hi (Nd + N2, together with 
al l  the Numbers of NJ + Hi(N2 ) .  In other words, we 'collect' on one 
side the Numbers which are the sum of N, and N2 and the low sub­
Numbers of the other Number, and on the other side the same sums, 
but with the h igh sub-Numbers . 

We thus obtain two sets of Numbers, which we can cal l  L and H.  
It is not hard to  prove, by  way of a ' incremental '  induction which 

I leave to one side,4 that L and H are in a situation of a cut: every 
Number of L is smaller than every Number of H.  

We then uti lise the fundamental theorem (chapter 1 5 ) .  The result 
of the addition of N ,  and N2 wil l  be precisely the Number which 
makes a cut between these sets, that is, the unique Number of minimal 
matter situated between the sets : 

We posit: 

L = (Lo (Nd + N2,N , + Lo(Nz ) )  

H = (H i (Nd + N2,N , + Hi(N2 ) )  

R ULE 2 N ,  + N2 = UH, cut o f  the two sets defined above. 
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18 .7. Addition is commutative 
In fact, this cut, which supposedly defines the sum N2 + Nh operates 
on the same sets as the cut which defines N I + Nl, as one can show 
inductively with no difficulty. 

It is true at level 0, where there is only the sum, certainly commu­
tative, ° + 0. 

Suppose that the sums of ordinal levels inferior to ((WI ,W2 ) = W 
are commutative. Then, in particular, the sums Lo( N d  + Nz or N,  + 
Lo(N2 )  are commutative. So the set L = ( Lo( N d  + N2,N I + Lo(Nz ) ) ,  
which serves to  define N ,  + Nz,  is composed of the same Numbers 
as the set L' = ( Lo(N2)  + (Nd ,Nz + Lo(Nd ) , which serve to define 
Nz + N I .  Evidently, the same goes for the set H.  And consequently, 
Nz + N I ,  being defined by the same cut as NI + N2, is equal to it: 
addition is commutative. 

1 8 .8 .  The Number 0, which is more precisely the Number (0,0),  is 
the neutral element for addition 
It is a question of proving that, for every Number N, N + ° = N. 
Induction can this  t ime be applied directly to the ordinal-matter of 
the Numbers. 

It is true at level 0, s ince rule 1 prescribes that ° + ° = 0. 
Suppose that this is true for al l  the Numbers of lower matter than 

W I '  In other words, for every Number N of matter w such that 
W E  Wh N + ° = N. 

Now take a Number N J  of matter WI ' Let's examine the sum 
N I + 0. The sets L and H of the cut which define the addition 
are: 

L = ( Lo (N d + 0, Lo (O )  + N d  

H = (H i (Nd + 0 ,  Hi (O )  + N d  

But the low set and the high set o f  the Number 0 - that is, (0,0) -

are empty (0  has no sub-Numbers ) .  The conventions adopted in 1 8 .6 
prohibit us from taking into account the terms Lo(O )  + NI and 
Hi (O )  + N , .  So we actually have: 

L = ( Lo (Nd + 0)  

H = (H i (Nd + 0)  

But  Lo( N d  and Hi (N d are composed of sub-Numbers of N h  
and therefore of Numbers o f  lower matter than W I '  Consequently, 
the hypothesis of induction appl ies to all the Numbers of Lo(N d 
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or  of Hi(Nd :  for any  such Number, say  N dw2' i t  i s  the case that 
N dw2 + 0 = N 1 1w2 ' 

We can, with a sl ight abuse of notation, write this result in the 
form Lo( N d  + 0 = Lo( Nd ,  Hi (Nd + 0 = Hi(N d .  So that, ultimately, 
L and H, which define by a cut the sum N 1 + 0, are no other than 
Lo(Nd and Hi(Nd .  But the Number defined by a cut between its low 
set and its h igh set is precisely the Number N 1 itself, and so it is 
indeed the case that N I + 0 = N I '  

The induction is complete: for a Number N ,  whatever its matter, 
o is a neutra l element for addition. 

1 8.9. Every Number N apart from 0 allows the Number -N as its 
inverse for addition: N + (-N) = 0 
An important point: s ince -N inverts the form and the residue of N, 
the low set of -N is composed of the Numbers -Nlw, where Nlw is a 
Number from the high set of N; and the high set of -N is composed 
of the Numbers -Nlw, where Nlw is a Number from the low set of N. 
A sub-Number Nlw is in the low set if w is in the form, and it is in the 
high set i f  w is in the residue. These determinations wil l  be inverted in 
-N. And, since everything that precedes w in N is also inverted ( what 
was in the form is in the residue, and what was in the res idue is in the 
form) ,  in addition to the exchange of the low set and the h igh set, we 
wil l  also have an exchange of the signs of positive and negative. 

In an abuse of notation, we could therefore write the h igh set of 
-N as -(Lo(N) ) ,  and the low set of -N as -(Hi (N ) ) .  

The result ( see the inductive definition o f  addition) i s  that the two 
sets L and H which define by a cut the sum N + (-N)  are the 
following: 

L = ( Lo(N) + (-N) ,  N + (- (Hi (N) ) ) )  

H = (Hi (N)  + (-N) ,  N + (-( Lo(N ) ) ) )  

So  the strategy o f  the proof consists i n  proving that a l l  the N 
umbers of L are negative and al l  the Numbers of H positive. The 
result is that 0 is s ituated between L and H and that, being necessarily 
of minimal matter in that position, it is 0 that occupies the position 
of the cut between L and H. Consequently, N + (-N)  = O. 

LEMMA If the sum N I + N2 is positive, if N I + N2 > 0, then 
-(Nd < N2, and -(N2)  < N1 • 

The lemma is true at ordinal level 0, because at that level it cannot 
possibly be the case that N 1 + N2 > O .  



206 OPERATIONAL DIMENSIONS 

Suppose that it is true up to ordinal level W:  for every pair of 
Numbers N3 and N4 such that {(W3,W4) E W, the property in ques­
tion holds. I say that it also must hold for every pair of Numbers N ,  
and N2 such that {(W"W2) = W. 

The sum N, + N2 is defined by the cut UH. If  this cut is 
positive, it is because set L contains positive Numbers,s or else the 
cut would be negative or null ( see the argument on cuts in 1 5 . 1 1 ) .  
A s  for set H ,  i t  only conta ins positive Numbers. Consequently, 
there are Numbers in Lo(Nd  + N2 or in N, + Lo(N2 ) that are 
positive, and all the Numbers of Hi (N i l  + N2 or of N, + Hi(N2) 
are so. 

Take for example N , lw + N2 as a positive Number of Lo(Nd + 
N2. The pair of N , lw and N2 is of lower ordinal level than W, and 
the lemma is therefore supposed to be true of it: s ince the sum N dw 
+ N2 is positive, it is  the case that -(N2)  < N21w, and, since N dw is 
in the low set of N" it is a fortiori the case that -(N2 ) < N , .  In exam­
ining the other components of sets L and H, the lemma can be 
established in a l l  general ity. 

Now let's come back to the sum N + (-N) .  Consider the set L 
which defines it by a cut, so: 

L = ( Lo (N)  + (-N) ,  N + (-Hi (N) ) ) .  

Suppose that there are positive Numbers i n  L .  Take for example 
one such Number Nlw + (-N) ,  where Nlw is from the low set of N. 
In virtue of the lemma, it i s  the case that -(-N) < Nlw, so N < Nlw, 
which is impossible since Nlw, being from the low set of N, must be 
smaller than N. If N + (-N /w) is positive, N /w being in the high set 
of N, it must be the case that N /w < N, which is prohibited, since 
N dw belongs to the high set. We meet with an impasse, and so there 
are no positive Numbers in set L. 

Symmetrical deductions would demonstrate that there are no nega­
tive or nul l  Numbers in set H.  

Finally, the cut  LlH which defines the result of the addition 
N + (-N )  operates between a set L of negative Numbers and a set H 
of positive Numbers. The N umber of minimal matter situated between 
these two sets is necessari ly 0, and so N + (-N) = O. 

So we can say that -(N) is the inverse of N for add ition . 

1 8 . 1 0. Confirming that the addition of Numbers is associative is, 
as always, a tiresome calculation. It is, it is . . .  To the extent that 
we have establ ished that Numbers, endowed - so to speak - with 
addition defined inductively by the cut: 
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would form (were it not for the inconsistency of their 'Al l '  . . .  ) an  
ordered commutative group, of which the Number Zero (either (0 ,0 )  
or 0, i t ' s  al l  the same) is the neutral element. 

To confirm that the 'representatives' in our Numhers of whole 
positives and negatives, rationals, rea Is, ordinals, are in fact these 
numbers themselves, but thought in their being, we must prove that 
addition (in the normal sense ) of these numbers coincides with addi­
t ion of their being as Numbers. For example, if r l  and r2 are numbers 
from the real field, and if r l  + r2 = r3 with 'classic ' addition, then the 
Numbers r J ,  r2 and r3 defined as Numbers of finite matter or of matter 
(0, as we presented them in 16.27, are such that, addition being 
defined inductively as above, it is  a lways the case that rl + r2 = r3 . 

These confirmations of a lgebraic isomorphy demand no l ittle inge­
nuity, above all when it comes to multiplication (which labyrinth we 
will avoid entering into ) .  

18. 1 1 .  I wi l l  content myself with carrying out the verification for 
natural whole numbers. 

Remember ( from 16. 1 3 )  that a natural whole number n presented 
as Number is of the form (n ,n) ,  where n is a finite ordinal .  Recal l  
also ( ibid . )  that the low set of n i s  constituted by al l  the whole 
Numbers lower than n, and that its h igh set is empty. 

Take two natura l whole Numbers ( n J ,nd  and ( n2 ,n2 ) '  Their sum is 
formally defined by the cut: 

But, as Hi (nd  and Hi (n2 )  are empty, the sums of set H of the cut 
are not defined (convention on the definition of addition, see 1 8 .6 ) .  
Set H is therefore empty, which amounts to  saying that the  sum i s  
simply the upper bound of set L.  

Since Lo(nd is the set of Numbers lower than n J ,  the  sum Lo(nd  
+ n2 i s  constituted by  a l l  the sums ° + n2, 1 + n2, . . .  (n l  - 1 )  + n2' 

And, in just the same way, n l  + Lo(n2 ) is constituted by a l l  the 
sums nl  + 0, nl + 1, . . .  , nl + ( n2 - 1 ) .  

The largest Number o f  these sums i s  i n  al l  evidence the Number 
n l  + n2 - 1 .  

Reasoning by induction: suppose that, up to the ordinal rank 
which corresponds to the pair of Numbers n J ,n2 ( so, in real ity, the 
Numbers ( n J ,nd  and (n2 ,n2 ) ) ,  therefore up to the ordinal w = f(n J ,n2 ) ,  
i t  i s  true that the sum of  wholes a s  Numbers w i l l  be  the Number 
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which corresponds to the (normal )  sum of the wholes. In particular, 
that it is true for the pair n l > ( 112 - 1 ) , which is evidently of a lower 
ordinal rank than the pair n l >n2 . It is therefore to be supposed that 
(n l >nd  + ( ( n2 - 1 ) , (n2 - 1 ) ) = the Number which corresponds to the 
ordinary addition of the numbers n, and (n2 - 1 ) , that is, the Number 
( n ,  + (n2 - 1 ) ,n ,  + ( 112 - 1 ) ) ,  where the s ign + denotes the ordinary 
addition of whole numbers . 6  

Now we come to see that the largest Number in the set L which 
defines n, + n2 i s  precisely n, + ( 112 - 1 ) . In virtue of the hypothesis 
of induction, this Number is the Number which corresponds to its 
being written as an ordinary addition - the Number which inscribes 
the whole number n ,  + n2 - 1 .  

Now, n ,  + n2 ( in the sense of the addition of Numbers) is the upper 
bound of L. And every upper bound is a Number of the type (W,W), 
as we have demonstrated in 1 5 .9 .  The upper bound of L wil l  therefore 
be the smal lest Number of the type (W,W) to be superior to the largest 
Number in L, which is the Number ( n ,  + n2 - 1 ,11 , + n2 - 1 )  (where 
the s igns + and - have their traditional meaning, as when dealing 
with numbers ) .  This Number is evidently ( n ,  + n2,n , + n2 ) ,  because 
n,  + n2 is the fin ite ordinal which comes immediately after the fin ite 
ordinal n ,  + n2 - 1 .  

Consequently, the sum ( in  the Number sense ) of the two whole 
Numbers n, and n2 is the Number that represents the number sum 
n, + n2 ( in  the number sense ) .  The addition of whole Numbers is 
isomorph ic to the traditional addition of whole numbers. 

The treatment of whole negative numbers poses no great problem 
(an interesting exercise ) .  Thus it is confirmed that the whole positive 
and negative Numbers form a commutative group isomorphic to the 
additive group of the ring 7L. of the algebraic whole numbers. 

The reader will have grasped the essence of operational proce­
dures: find a 'good' inductive definition of the l inks, prove the classic 
algebraic properties (associativ ity, commutativity, neutral element, 
inverse, distr ibutivity . . .  ) ,  confirm that what one obtains is isomor­
phic, for the classical numbers represented in Numbers, to the 
structures which these numbers are endowed with . 

However laborious these efforts might be, they lead to the desired 
conclusion: al l  the classic a lgebraic structures (the ring 7L. of algebraic 
whole numbers, the field a of rationals, the field IR of reals ) ,  and al l  
the ' inconsistent' algebras (add ition and multiplication of ordinals) 
are isomorphic to the substructures discernible within Numbers. 

And so it is that all types of numbers, without exception and 
in their every d imension, are subsumed by the unique concept of 
Number. 
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In Conclusion: 
From N umber to Trans- Being 

19. 1 .  Number is neither a trait of the concept, nor an operational  
fiction; neither an empirical given , nor a constitutive or transcenden­
tal category; neither a syntax, nor a language game, not even an 
abstraction from our idea of order. Number is a fo rm of Being. More 
precisely, the numbers that we manipulate are only a tiny deduction 
from the infinite profusion of Being in Numbers. 

Essentially, a Number is a fragment sectioned from a natural mul­
tiplicity; a multipl icity thought, as ordinal, in its being qua being. 

The l inear order of Numbers, l ike their algebra, i s  o u r  way of tra­
versing or investigating their being. This way is laborious and l imited . 
It exhibits Number in a tight network of l inks, whose three principal 
categories are succession, l imit and operations .  This is where the i l lu­
sion arises of a structural or combinatory being of Number. But, in 
real ity, the structures are consequences, for our finite thought, of that 
which is legible in Number as pure multiplicity. They depose Number 
in a bound presentation which makes us bel ieve that we manipulate 
it like an object. But Number is not an object. Before every bound 
presentation, and in the un-bound eternity of its being, Number is 
available to thought as a formal section of the multiple. 

We might also say that between Number, which inscribes its 
section in the unrepresentable incons istency of natural multiples, and 
number, which we manipulate according to structural links, passes 
the difference between Being and beings. Number is the place of the 
being qua being, for the manipulable numerical ity of numbers. 
Number ek-s ists in number as the latency of its being. 
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1 9.2.  This only makes it more remarkable, then, that we can have 
some access to Number as such , even if th is access sti l l  indicates an 
excess: that of being over know ledges, an excess manifest in the 
numberless extent of Numbers, compared to what we can know by 
structuring the presentation of types of numbers. That mathematics 
al lows us at least to designate this excess, to accede to it, confirms 
the ontological vocation of that discipl ine. The history of mathemat­
ics, for the concept of Number as for every other concept, is precisely 
the h istory, interminable in principle, of the relation between the 
inconsistency of being as such,  and what our thought can make con­
sistent of this inconsistency. Mathematics establishes ontology as the 
historical situation of being. It progresses constantly within ontico­
ontological d ifference, bringing to l ight, as the latency of the struc­
tures presented in the ontological situation, an excessive horizon of 
inconsistency, of which structures are only effects for a finite thought. 
It is this trajectory which we have reconstructed at one of its points: 
that which designates, beyond numbers, the inconsistent multiple­
eternity of Numbers . 

19.3 .  Number is thus rendered over to being, and subtracted from 
the humanity of operations or figures of order, which nevertheless it 
continues to subtend in thought. The task concerning Number, and 
numbers, can only be to pursue the deployment of their concept 
with in ontico-ontological difference. Number fal ls within the exclu­
sive purview of mathematics, at least so far as the thinking of number 
is concerned. Our philosophical project prescribes this exclusivity, 
and designates where Number is given as the resource of being within 
the l imits of a situation, the ontological or mathematical situation . 

We must abandon the path of the thinking of Number followed 
by Frege or Peano, to say nothing of Russell or Wittgenste in.  We 
must even radical ise, overflow, think up to the point of dissolution, 
Dedekind's or Cantor's enterprise. There exists no deduction of 
Number, it is  solely a question of a fidel ity to that which, in its 
inconsistent excess, is  traced as historical consistency in the intermi­
nable movement of mathematical refoundations.  

The modern instance of this movement attests to the void and the 
infinite as materials for the thinking of Number. Nevertheless, none 
of these concepts can be inferred from experience, nor do they propose 
themselves to any intuition, or submit to any deduction, even a tran­
scendental one. None of them amounts to the form of an object, or 
of objectivity. These concepts arise from a decision, whose written 
form is the axiom; a decision that reveals the opening of a new epoch 
for the thought of being qua being. Being asks noth ing more of us, 
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at this point, than that we doggedly pursue the inscription - within 
a revised ontological situation - of that which, in tracing the incon­
sistent latency of being, fa ithful ly prepares the rupture at a point of 
that place where it consists for us.  

19.4.  It is then possible to maintain that the contemporary ' banalisa­
tion' of number is outside al l  thought. The reign of number, the 
portents of which I discussed at the beginning of this book, is intran­
sitive to the mathematical thought of Number. It imposes the fal la­
cious idea of a bond between numerical ity and value, or truth . But 
Number, which is an instance of being as such, can support no value, 
and has no truth other than that which is given to it in mathematica l 
thought, effectuating its historical presentation for us. 

If the reign of number - in opinion polls or votes, in national 
accounts or in private enterprise, in the monetary economy, in the 
asubjectivising evaluation of subjects - cannot be authorised by 
Number or by the th inking of Number, it is because it fol lows from 
the simple law of the situation, which is the law of Capita l .  This law 
assures, as does every law, the count-for-one of that which is pre­
sented in the situation, it makes our historical situation consist, but 
it cannot make any claim to truth: neither to a truth of Number, nor 
to a truth which would underlie that which Number designates as 
form of being. 

In our situation, that of Capital ,  the reign of number is thus the 
reign of the unthought slavery of numericality itself. Number, which, 
so it is claimed, underlies everything of value, is in actual fact a pro­
scription against any thinking of num ber itself. Number operates 
as that obscure point where the situation concentrates its law; 
obscure through its being at once sovereign and subtracted from all 
thought, and even from every investigation that orients itsel f  towards 
some truth . 

The result is that al l  thought necessarily deploys itself today in a 
retreat with regard to the reign of number, including every thought 
that tries to make a truth of Number. It is in this sense that we must 
hearken to Mallarme's slogan, more pertinent than ever: that of 
restrained action. 1 

This whole meditation on the concept of Number, because it 
restores it to being, necessitates the inversion of the contemporary 
judgement such as it is  presented under the banner of number. We 
must say, against this j udgement, that nothing made into number is 
of value. Or that everyth ing that traces, in a situation , the passage of 
a truth shall be signal led by its indifference to numericality. Not so 
that this indifference can in its turn be made into a criteria, because 
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many projects, having no number, have no truth either. But this indif­
ference is a necessary subjectivity. 

The reverse side of the abundance of capital is the rarity of truth, 
in every order where truth can be attested to: science, art, politics 
and love. 

19 .5 .  But if the true is , on principle, in our situation , subtracted from 
the reign of number, which is only a law of this situation, what is 
the origin of this process ? 

A truth can depend neither upon being as such (this is why it does 
not signal itself through a Number) nor upon the contemporary situ­
ation, which is that of Capital (this is why it does not signal itself 
through numbers ) .  Its origin is evental .  But the event is not non-being, 
however much it exceeds the resources of situation-being. The best 
way to say it would be that the event is of the order of trans-being: 
at once 'held' within the principle of being (an event, l ike everything 
that is ,  is a multiple) and in rupture with th is principle ( the event 
does not fa ll under the law of the count of the situation, so that, not 
being counted, it does not consist ) .  Eventa l trans-being is at once 
multiple and 'beyond' the One - or, as I have chosen to call it, ultra­
One. The poss ibi l ity that there can be a truth, in a situation whose 
state has wholly succumbed to numbers, depends upon a fidelity, 
subtracted from numbers, to this ultra-One. 

To think Number, as we have tried to do, restores us, either 
through mathematics, which is the history of eternity, or through 
some faithful and restrained scrutiny of what is happening, to a 
supernumerary hazard from which  a truth originates, a lways heter­
ogenous to Capital and therefore to the slavery of the numerical .  It 
is a question, at once, of del ivering Number from the tyranny of 
numbers, and of releasing some truths from it. In any case, restrained 
action is the principle of a remote disorder: it establishes mathemati­
cally that order is but the al l -too-human precarity of a thinking of 
the being of Number; it proceeds, effectively and theoretically, to 
the downfal l  of numbers, which are the law of the order of our 
situation: 

'Like a god, I put in order neither one nor the other . .  . ' 2 
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1 [Dedekind, R., Was sind und was sol/en die Zahlen (Braunschweig: 
F. Vieveg, 1 8 8 8 ) ; Engl ish translation The Nature and Meaning of 
Numbers, in Beman, W. W. (ed . ,  trans . ) ,  Essays on the Theory of 
Numbers ( La Salle, IL: Open Court, 1 90 1 ;  reprinted NY: Dover 
1 963 ) .  Badiou's reference is  to the translation by J. Milner, with H. 
Sinaceur's introduction, Les Nombres, que sont-i/s et a quoi servent­
ils? ( Paris: Navarin, 1 979 ) .  All  references given below are to the 
numbered sections of Dedekind's treatise. - trans. )  

2 [aei 0 anthropos arithmetizei - 'man is a lways counting' - in 
Dedekind, 'Numbers' ,  Preface to the first edn. - trans. )  

3 [Marx and Engels, Communist Manifesto, translated by S. Moore, 
with introduction and notes by G. S.  Jones ( London: Penguin, 
2002 ) ,  p. 222 . - trans. )  
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C hapter I G reek Number and Modern Number 

1 Consider, for example, the definition of number in Eucl id's Elements 
( Book VII, definition 2 ) :  'ApleIl6� EO''tlV 'to h: 11OvuBcov O'UYKEtIlEVOV 
1tA.ijeo�' .  We might translate i t  as follows: 'A number is a multitude 
composed of unities.' The definition of number is secondary, being 
dependent upon that of unity. But what does definition 1 ,  that of 
unity, say ? Movu£ EOTLv, Ka8'�v EKaOTOV TUN OVTCOV EV AEYETOl: 
'Unity is that by virtue of which each being is said to be one. '  We 
can see immediately what ontological substructure is presupposed 
by the mathematica l definition of number: that the One can be said 
of a being in  so far as  it is. 

2 [ trait: see ch. 2 n  3 .  - trans . ]  

3 [Conway, J. H. ,  On Numbers and Games ( London Mathe­
matical Society Monographs no. 6, London: Academic Press, 1 976 ) .  
- trans. ] 

4 [Knuth, D. E. ,  Surreal Numbers ( Reading, MA: Addison-Wesley, 
1 974 ) .  - trans. ]  

5 [Gonshor, H. ,  A n  Introduction to the Theory of Surreal Numbers 
( London Mathematical Society Lecture Note Series, 1 1 0,  Cam­
bridge: Cambridge University Press, 1 98 6 ) .  - trans. ]  

6 [Since the language of 'whole' and 'natural '  numbers is informal 
and not always applied consistently, it is worthwhile to set out the 
usage of the present work, along with the formal mathematical 
equivalents: 
• whole numbers:  0, 1 ,  2, 3 . . .  ( the non-negative integers, Z * ) .  
• natural whole numbers: 1 ,  2 ,  3 . . .  ( the positive integers, Z+) .  
• 'relative ' whole numbers: . . .  -3, -2 , -1 , 0, 1 , 2 , 3  . . .  ( the inte­

gers, Z ) .  - trans. ]  

7 On the dialectic - constitutive of materia l ist thought - between 
a lgebra ic and topologica l orientations, the reader is referred to my 
Theorie du Sujet ( Paris :  Seui l ,  1 9 82 ) ,  pp. 2 3 1 -49 .  

8 [See Bourbaki ,  N. ,  Elements de mathematique, Livre 1: Theorie des 
ensembles ( Paris: Hermann, 1 954) ;  Engl ish edn Elements of Math­
ematics, Vol I: Theory of Sets ( Reading, MA: Addison-Wesley, 
1 96 8 ) . - trans. ] 

9 The theme of the cut, in its concept and its technique, is treated in 
chapter 15 of this book. 

1 0  [See Dedekind, Numbers, § 73 .  - trans. ] 

1 1  [Frege, Gottlob, Die Grundlagen der Arithmetik: Eine logisch­
matematische Untersuchung uber den Begriff der Eahl (Breslan, 
1 8 84 ) ; The Foundations of A rithmetic, Engl ish translation by J .  L. 
Austin (2nd revised edn, Oxford: Blackwell ,  1 974 ) .  References given 
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below are to the numbered sections of  Frege's text. The first German 
edn appeared in  1 8 84. - trans. ]  

12 [See Frege, Foundations, § 2 8-§29 .  - trans . ]  

13  For a particular ly brief introduction to the di fferent types of numbers 
which are used in modern analysis, refer for example to J .  Dieudon­
ne's Elements d'analyse, I: Fondements de [ 'analyse moderne ( Paris :  
Gauthier-Vi llars, 3rd edn, 1 98 1 ) , chs 1-4.  

14 [unique nombre qui ne peut pas hre un autre: From Mallarme's 
'Un Coup de des jamais n'abolira Ie hasard', translated in E. H. 
Blackmore and A. M .  Blackmore, Collected Poems and Other Verse 
(Oxford: Oxford University Press, 2006 ) ,  pp. 1 6 1-8 1  as 'A dice 
throw at any time never will abolish chance' ( translation modified ) .  
- trans. ]  

1 5  Natacha Michel proposes the distinction between 'first modernity' 
and 'second modernity' in L 'Instant persuasif du roman ( Paris :  Les 
Conferences du Perroquet, 1 987 ) .  

1 6  Dedekind, Numbers, § 64 .  

1 7  I give a detailed commentary on the Hegelian concept o f  number - a 
positive virtue of which is that ,  according to it, the infinite is the 
truth of the pure presence of the finite - in meditation 1 5  of L 'Etre 
et l 'evenement ( Paris:  Seuil, 1 98 8 ) ,  pp. 1 8 1-90 [pp. 1 6 1-70 in 
Ol iver Feltham's Engl ish translation Being and Event ( London: 
Continuum, 2005 ) .  - trans. ]  

1 8  [See Frege, Foundations, § 84-§ 86 .  - trans. ]  

19  [Dedekind, Numbers, § 2 .  - trans. ]  

20 [Frege, Foundations, § 74.  - trans. ]  

2 1  [Dedekind, Numbers, § 73 .  - trans. ]  

22 [Tout. - trans. ]  

23 [Dedekind, Numbers, § 66 .  - trans. ] 

Chapter 2 Frege 

1 The key text for Frege's conception of number is The Foundations 
of Arithmetic [on which see above, ch. I n  1 1  - trans . ] . The funda­
mental argument, extremely dense, occupies paragraphs 55 to 86 
( less than thirty pages in the cited edition ) .  We must salute Claude 
Imbert's excellent work, in particular her lengthy introduction. 
[Badiou refers to Imbert's translation Les Fondements de 
l 'arithmhique ( Paris :  Seui l ,  1 96 9 ) .  - trans. ]  

2 [ toute pensee emet un coup de des: Mallarme, 'Coup de des ' ,  p. 1 8 1 .  
- trans. ]  
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3 [See Frege, Foundations, § §  46-53 .  Badiou renders Frege's Eigen­
schaft as trait: Although Austin has 'property,'  I have used 'trait' 
here, so as not to lose the distinction present in Badiou's text 
between trait and propriete. - trans. ]  

4 [In Austin's Engl ish translation, Frege's term Gleichzablig is ren­
dered as 'equal ' ,  but see Austin's note at § 6 7  on possible a lterna­
tives: I follow both Austin's advice and Badiou's use of equinumericite 
in employing equinumerate as the term which avoids at once impre­
cision and ugly neologism . - trans. ]  

5 [Frege, Foundations, § 6 8 .  - trans . ]  

6 [ Ibid. ,  § 74.  - trans . ]  

7 [ Ibid. ,  § 77. - trans . ]  

8 [Ibid. - trans. ]  

9 [ Ibid. ,  § 74.  - trans . ]  

10 [ Ibid. - trans. ]  

1 1  [ Ibid.  - trans . ]  

1 2  The letter (written i n  German) i n  which Russell makes known to 
Frege the paradox that would take the name of its author is repro­
duced in English translation in From Frege to Godel, a collection 
of texts edited by J. van Heijenoort ( Ca mbridge, MA: Harvard 
University Press, 4th edn, 1 98 1 )  p .  1 24.  Russell concludes with an 
informal distinction between 'collection' [or ' set' , German Menge ­
trans. ]  and 'total i ty ' :  'From this [the paradox] , I conclude that under 
certa in  circumstances a definable collection [ Mellge] does not form 
a total i ty . '  

13  Zermelo develops h i s  set-theoretical axiomatic, including the 
axiom of separation, which remedies Russel l ' s  paradox, in a 1 908 
text written in German. It can be found in  English translation in  
van Heijenoort's collection, cited in the  preceding note. It comes 
from Investigations in the Foundations of Set Theory, and espe­
cially its first part, 'Fundamental Definitions  and Axioms', pp. 
20 1-6 .  

14  [Frege, Foundations, §58 .  - trans . ]  

1 5  The subordination of the existentia l  quantifier to the universal quan­
tifier means that, given a property P, if every possible x possesses 
this property then there exists an x which possesses it . In the predi­
cate calculus :  'v'x( P(x ) )  � 3x(P(x ) ) .  The classical rules and axioms 
of predicate calculus permit one to deduce this implication. Cf. for 
example E. Mendelson's  manual Introduction to Mathematical 
Logic (NY: Van Nostrand, 1 964) ,  pp. 70-1 . 

1 6  [TO yag alho voEi:v taTLv TE Kat ElvUL, from Parmenides' poem. 
- trans. ] 
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Chapter 3 Additional Note on 
a Contemporary Usage of Frege 

1 Mil ler's text appears in Cahiers pour l 'analyse, no 1 ( Par is :  Seu i l ,  
February 1 966 ) ,  pp. 37-49 [ translated by Jacquel ine Rose as 
'Suture ( Elements of the Logic of the Signifier) '  in Screen, 1 8 : 4 
( 1 978 ) ,  pp. 24-34. - trans . ] . One ought to read along with it Y. 
Duroux's article 'Psychologie et logique' appearing in the same 
issue (pp. 3 1-6 ) ,  which examines in detail  the successor function in 
Frege. 

2 Cf. A. Badiou, 'Marque et manque: A propos du Zero' ,  in Cahiers 
pour l 'analyse, no 1 0  (Paris: Seui l ,  1 96 9 ) ,  pp. 1 50-73 . 

3 U'y suis, j 'y suis toujours. From Rimbaud's 1 8 72 poem 'Qu 'est-ce 
pour nous, mon creur, que les nappes de sang' [translated in Col­
lected Poems, ed. and trans. Oliver Bernard ( London: Penguin, 
1 986 ) ,  pp. 202-3 . - trans . ] . 

4 [Mil ler, 'Suture', p. 40. - trans. ]  

5 [meconnue. - trans. ]  

6 [Mil ler, 'Suture', p. 40.  Translation modified. - trans . ]  

7 [Ibid. - trans. ]  

8 [See Frege, Foundations, § §  26-27. - trans . ]  

9 [Mil ler, 'Suture' , p. 44. - trans . ]  

10  [Ibid. p .  46 .  - trans. ]  

1 1  [ Ibid. p .  47. Translation modified. - trans . ]  

1 2  [Ibid. p .  43 .  - trans . ]  

1 3  [ I 'instance de La Lettre. - trans. ]  

14 [ Ibid. p.  44. - trans. ]  

1 5  O n  the typology of orientations i n  thought, d. Meditation 2 7  of 
L 'P.tre et / 'evenement, pp. 3 1 1-1 5 [pp. 2 8 1 -5 in the Engl ish transla­
tion. - trans. ] . 

1 6  [Mil ler, 'Suture', p .  40.  Translation modified. - trans. ]  

1 7  [ Ibid. p .  4 1 .  - trans.] 

1 8  [ Ibid. p .  47. Translation modified. - trans. ]  

1 9  [ 'Matrice' ,  in Ornicar? 4 ( 1 975 ) ;  translated by Daniel G .  Col l ins in  
Lacanian Ink 1 2  ( Fal l ,  1 997) :  pp.  45-5 1 .  - trans. ]  

2 0  [Mil ler, 'Suture,' p .  39 .  - trans. ]  

2 1  [fourmillement: if not for its unfamiliarity, the more direct 
etymological equivalent of the psychiatric term formication,  
designating a prickling or t ingling as of ants  crawling over the 
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skin, might carry less of an inappropriate sense of dynamic 
sel f-organisation than 'swarming' : rather than implying any 
vital movement, Badiou's fourmillement seems to denote 'our' 
phenomenological registration of the icy 'constellations' of Number. 
- trans. ) 

22 For example E. Borel, 'La Philosophie mathematique et I ' infini', 
Revue du mois, 14 ( 1 9 1 2 ) ,  pp. 2 1 9-27. 

Chapter 4 Dedekind 

1 The reference text for Dedekind's doctrine of number is The Nature 
and Meaning of Numbers [ see ch. On 1 above - trans . )  The first 
German edition was published in 1 8 8 8 .  

2 [Dedekind, Numbers, § 1 .  - trans. )  

3 [ Ibid. ,  §2 .  - trans. )  

4 [ Ibid. ,  § § 2 1-25 .  - trans. )  

5 [ Ibid. ,  § §  26-35 .  - trans. )  

6 [ Ibid.  § 7 1 .  - trans. )  

7 [ Ibid. § 73 .  Dedek ind's text has <I> where Badiou uses f - trans. ]  

8 We might say that Frege is a Leibnizian, Peano a Kantian, and 
Cantor a Platonician.  

The greatest logician of our times, Kurt G6del, considered that 
the three most important philosophers were Plato, Leibniz and 
Husserl - this last, i f  one might say so, holding the place of 
Kant. 

The three great questions posed by mathematics were thus: 

1 the reality of the pure intell igible, the being of that which math­
ematics th inks ( Plato ) ;  

2 the  development of a well-formed language, the  certitude of 
inference, the laws of calculation ( Leibniz ) ;  

3 the constitution of sense, the universal ity of statements (Kant, 
Husserl ) .  

9 [ See Dedekind, Numbers, Preface to the first Edn .  - trans . )  

1 0  [Dedekind, Numbers, § 64n .  - trans . )  

1 1  [ Ibid.  - trans. )  

1 2  [ Ibid. ,  § 6 6 .  Dedekind's text has <I> where Badiou has f, and a ,  b 
rather than S l ,  S2.  - trans. ] 

1 3  [�a - also ' id ' .  - trans. )  
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Chapter 5 Peano 

The reference text for Pea no is a text published in Latin in 1 8 89 ,  
whose Engl ish title is :  'The Principles of Arithmetic ' .  The Engl ish 
translation of this  text is found in J .  van Heijenoort ( ed . ) ,  From 
Frege to Gadel, pp. 83-97. 

2 [Ibid. ,  p. 85 .  - trans. )  

3 [Ibid. - trans. )  

4 This passage is taken from a letter from Dedekind to Keferstein, 
dating from 1 890.  The Engl ish translation can be found in van 
Heijenoort (ed. ) ,  From Frege to Gadel, pp. 98-1 03 .  

5 [Van Heijenoort (ed . ) ,  From Frege to Gadel, p. 85 .  - trans. )  

6 [Title of Husserl 's 1 9 1 1 'manifesto' ;  translated in Q. Lauer (ed. ) ,  
Phenomenology and the Crisis of  Philosophy ( New York: Harper, 
1 9 1 0 ) .  - trans. )  

7 [Van Heijenoort (ed . ) ,  From Frege to Gadel, p. 85 .  - trans. )  

8 [Ibid.,  p. 85 .  - trans. )  

9 [ Ibid. , p. 94. - trans. ] 

10 [ Ibid. - trans. )  

1 1  [Ibid. (Axiom 6 ) .  - trans . )  

12  [froide d'oubli et  desuetude, une Constellation :  Mallarme, 'Coup de 
des' ,  p. 1 8 1 .  - trans. ]  

13 Regarding these questions, one might read the (purely historica l )  
chapter 1 0  of Robinson, A.  Non-Standard A nalysis (Amsterdam:  
North-Hol land, revised edn 1 974 ) .  Robinson recognises that 
'Skolem's work on non-standard models of Arithmetic was the great­
est single factor in the creation of Non-Standard Analysis' (p. 278 ) .  

For a philosophical commentary on  these developments, cf. A .  
Badiou, 'Infinitesimal Subversion', i n  Cahiers pour l'analyse, no 9 
(Paris: Seui l ,  1 96 8 )  pp. 1 1 8-3 7. 

14 [ (a - trans.)  

Chapter 6 Cantor: 
'Well-Orderedness' and the Ordinals 

1 Cantor's clearest articulation of his ordinal conception of numbers 
is found in an 1 8 99 letter to Dedekind. See the English translation 
of the key passages of this letter in van Heijenoort (ed . ) ,  From Frege 
to Gadel, pp. 1 1 3-1 7. Cantor demonstrates an exceptional lucidity 
as to the phi losophical ly crucial distinction between consistent 
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multipl icities and inconsistent multipl icities. It is to him, in fact, that 
we owe this terminology. 

2 On this point, you are naturally referred to the work of Alexander 
Koyre. 

C hapter 7 Transitive Multipl icities 

1 [prenez ensemble - with the intended resonance of ensemble ( 'set' ) .  
- trans . ]  

2 [decoupe: a 'carving out' or deduction. - trans. ]  

Chapter 8 Von Neumann Ordinals 

1 John von Neumann gave a definition of ordinals independent of the 
concept of well-orderedness for the first time in a 1 923 German 
article, entitled 'On the introduction of transfinite numbers ' .  This 
article is reproduced in Engl ish translation in van Heijenoort (ed. ) ,  
From Frege to  Gadel, pp.  346-54 . 

The definition of ordinals on the basis of transit ive sets seems to 
have been taken up again in an article in Engl ish published in 1 937  
by  Raphael M. Robinson, entitled 'The theory of  classes, a modifica­
tion of von Neumann's system' (journal of Symbolic Logic, no 2, 
pp. 29-3 6 ) .  

2 Throughout this book, the ordinals, denoted in current l i terature by 
the Greek letters, will  be denoted by the letters W and w, supple­
mented further on with numerical indices, W h or W3 , etc. In general,  
W or w designate a variable ordinal ( any ordinal whatever) .  In 
particular, we employ the expression ' for every ordinal W'. The 
notation with indices is used to designate a particular ordinal, as in 
the expression 'take ordinal W, which is the matter of Number N , ' .  
The subscripts will b e  used most often to the left of the sign E ,  to 
designate an ordinal which is an element of another, as w , E W 
(ordinal WI is an element of ordinal W) .  

3 [ /a Nature (as opposed to nature) .  - trans. ] 

4 The Axiom of Foundation, also called the Axiom of Regularity, was 
anticipated by Mirimanoff in 1 9 1 7, and ful ly clarified by von 
Neumann in 1 925 .  To begin with, it was a matter, above all, of 
el iminating what Mirimanoff called 'extraordinary sets' ,  that is, 
those which are elements of themselves or conta in an infinite chain 
of the type . . .  E an+ , E an E • • •  E az E a l  E E. It was real ised only 
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later that this axiom enabled a hierarchical presentation of the uni­
verse of sets. 

For a historical and conceptual commentary on this axiom, cf. 
A Fraenkel , Y. Bar-Hillel and A. Levy, Foundations of Set Theory 
(Amsterdam: North-Holland, 2nd edn 1 973 ) ,  pp. 86-1 02.  
For a philosophical commentary, see Meditation 1 8  of L 'P-tre 
et / 'evenement, pp. 205-1 1 [pp. 1 84-90 in the Engl ish translation. 
- trans . ] .  

5 A good presentation of the fact that belonging (e ) orders the 
ordinals total ly ( strict order) - in other words that, given two 
different ordinals WI and W2, either WI e W2 or W2 e WI -
can be found in Shoenfield, J. R . ,  Mathematical Logic ( Reading, 
MA: Addison-Wesley, 1 967) ,  pp. 246-7. This proof is reproduced 
and commented upon in L 'P-tre et l 'evenement in the third section 
of Meditation 1 2, pp. 1 53-8 [pp. 1 34-9 in the Engl ish translation. 
- trans . ] .  

6 [decouper. - trans. ]  

Chapter 9 Succession and Lim it. The I nfinite 

1 Badiou, A. ,  Manifeste pour la philosoph ie, Paris: Seui l ,  1 98 9  [ trans­
lated by N. Madarasz as Manifesto for Philosophy ( Albany, NY: 
State Univers i ty of New York Press, 1 999 ) .  - trans . ) .  The circum­
stances and the effects of the philosophy's suture to the poem, 
beginning with Nietzsche and Heidegger, are described briefly in 
chapter VII, entitled 'The Age of Poets' .  

2 [Osip Mandelstam, from his Tristia ( 1 922 ) .  Badiou quotes Tatiana 
Roy's French translation: vers ces prairies infinies 014 Ie temps 
s 'arrete. - trans . ] .  The instant of Presence is beyond all insistence, 
al l  succession. The 'eternal m idday' is the trans-temporal limit of 
time. Here is the conjoint site of the poem and the sacred. 

It is not always in this place, it must be said, that Mandelstams's 
poems establish themselves. For in his most powerful poetry he 
seeks to think the century, and succeeds in doing so. 

Chapter 1 0  Recurrence, or I nduction 

1 For the demonstration of the validity of definitions by induction, 
you are referred to K.  J .  Devl in's Fundamentals of Contemporary 
Set Theory (NY: Springer-Verlag, 1 9 80 ) ,  pp. 6 5-70 ( 'The principle 
of recursion' ) .  
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Chapter 1 2  The Concept of Number: 

An Evental Nomination 

1 To repeat, the basic text for the study of the numbers called 'surre­
als '  is Gonshor's Introduction to the Theory of Surreal Numbers 
[ see ch. 1 n 5 - trans . ] .  The fact that Gonshor and all  current theorists 
of these numbers, which I cal l  Numbers, see them as a 'macro­
field' of the reals results in a presentation quite different from my 
own. 

The in ital idea of their creator, Conway, was to define 'surreal '  
numbers directly by means of cuts. A number will be defined as a 
pair of two sets of numbers, conforming to the conditions of the 
cut ( every number in the set ' to the right' in the pair is smaller than 
every number in the set 'to the left ' ) .  The double circularity of this 
definition obviously must be questioned (number is defined on the 
basis of number, and inequality between numhers is  mentioned 
without having been properly defined) .  The operation that serves to 
undo this circle is obviously transfinite induction, which makes 
ordinals appear inevitably on the scene.  In fact, Conway presents 
Numbers on the basis of their canonical representation - that is, in 
my language, their 'structural'  character: they are defined on the 
basis of their sub-Numbers. D. E. Knuth's book Surreal Numbers 
( Reading, MA: Addison-Wesley, 1 974 ) gives a 'pedagogical '  version 
of Conway's presentation in the form of a dialogue. It seeks to rec­
reate the menta l ity of a ' researcher' into the matter, but in fact 
becomes quite convoluted, since in its exposition the employment 
of the ordinal series is not made explicit. Besides this, it re­
establishes, to my mind to the detriment of the real 'genius' of the 
invention of Numbers, a creationist and progressive logic (first 
'creating' zero, then 1 and - 1 , etc . )  

Gonshor starts from a l iteral 'coding', whereas, in my quest for 
the concept and its phi losophical deployment, I jo in a set-theoretical 
l ineage. Technical ly speaking, Gonshor generalises the development 
in base 2 of the real numbers. A real number can he presented as 
an infinite denumerable series of signs 1 and O.  Gonshor's idea is to 
consider such series of any ordinal length whatsoever, rather than 
l imiting them to denumerahle series. He then begins with two signs 
+ and -, and calls ' surreal number of length W' a series of such signs 
indexed to the elements of the ord inal W. The index ordinals affected 
by the sign + correspond to the elements of what I call the form of 
the Number, and the index ordinals affected by the sign -, to the 
elements of the residue. The ordinal ' length' corresponds to what I 
call  the matter of the Number. 

As an example: the Number which I write (4 , (0 ,3 ) ) ,  whose matter 
is 4 and whose form contains the elements 0 and 3, is  written by 
Gunshor as follows: + - - +. 
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Now, of course surreal numbers and Numbers are 'the same 
thing' . But we might say that Gonshor treats them as  inscriptions, 
or markings, after the manner of Frege and of Peano's arithmetic. 
The inspiration here is ideographic. Whereas I approach them from 
the point of view of their multiple-being, in the Cantorian spirit, 
my inspiration being ontological ,  or Pla tonic. 

In fact even the technical development ends up being quite d if­
ferent, a lthough the results can always be translated from one 
version to the other. For example, it  is not insignificant that 
Gonshor, who, with the signs + and -, is unable to denote an 
occurence of the void, must invoke an 'empty series' of signs, 
where I would write (0 ,0 ) .  The conceptual adva ntage of the 
ontological approach to Number is that it al lows one to dispense 
with al l  additional l iteralisation, with every heterogeneous sign, 
in favour of the two fundamental set-theoretical relations of 
belonging E and inclusion c .  This doubtless explains why for 
Gonshor the theory of surreal numbers is a sort of specialist 
technique, whereas for me it is a wholly natural extension of the 
ontological vocation of set theory to the concept of Number. 

2 Gonshor, Introduction,  p. 43 .  

3 [decoupe. - trans.] 

Chapter 1 3  Difference and Order of Num bers 

1 Throughout this book, I call a relation ( most often one of order) 
'total '  when two different basic terms of the relation are always 
bound by this relation. Thus I would say that the relation E is total 
in the ordinals or that the relation E is total in the Numbers. 

Sometimes a relation is called ' total '  which is also reflexive, 
binding each term to itself. This is the case, for example, with the 
relation :::;; ( less than or equal to ) for the natural whole numbers. 

Limiting oneself to my definition, which only demands the rela­
tion between different terms, and excludes the relation of self with 
sel f (an i rreflexive relation, then ) ,  is  more convenient in the case we 
are dea ling with. Where we speak of an order-relation, we mean to 
say that its axioms are those of strict order. 

2 For Gonshor, order is easily presented as lexicographical,  since surreal 
numbers are introduced as series of signs + and - (d. ch. 1 2n 1 ) . 

3 On this point, d. Miller, J . -c. Libertes, Lettre, Matiere ( Paris: Con­
ference du Perroquet, June 1 985 ) .  

4 [Paul Celan, from Zeitgehoft ( 1 976 ) .  [ Badiou's reference is M.  
Broda's translation (Paris: Clivages, 1 9 85 ) :  chiquenaude / dans 
l 'abime, dans Ies / carnets de gribouillages / Ie monde se met a bruire, 
il n 'en tient / qu 'a toi. - trans. ]  
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Chapter 1 4  The Concept of Sub-Number 

1 Category theory is an attempt to reformulate al l  of mathematics 
within a structural, non-set-theoretical framework whose starting 
point is 'objects' ,  which are 'types of structures'; and 'arrows', 
which are transformations, or morphisms, between structures. The 
concept of substructure can be understood in terms of that of sub­
object. A ' sub-object' is in fact an equivalence class for certain 
arrows.  Cf. for example J. L. Bel l 's  book Toposes and Local Set 
Theories ( Oxford : Clarendon Press, 1 98 8 ) ,  in particular the argu­
ments of pp. 4 9-58 .  

2 [sectionne. - trans. )  

3 [ 'a la matiere pres' : In mathematics, 'a la x pres' - English equivalent 
'up to x

' - indicates that abstraction is to be made from a certain 
class of objects, which for the purposes of a particular statement or 
definition are to be regarded as a single entity. Thus a certain propo­
sition can be said to be true, or a property to be satisfied, 'up to 
isomorphism', 'up to rotation', 'up to translation', and so on. In the 
present context, the 'cut' between the high and low sets uniquely 
defines a Number, so long as we regard all possible configurations 
of 'matter' as being subsumed under the aspect of the unique minima l 
case. In other words, the definition of the cut must be supplemented 
by the principle of minimality. - trans . ]  

4 [encadrement: an  interva l in the mathematical sense, as in 'interval 
around a real number ' .  - trans. ]  

Chapter 1 5  Cuts: The Fundamental Theorem 

1 The problem of the cardinal ity of the set of parts of an infinite set is  
a central problem for set  theory after Cantor. The 'minimal '  hypoth­
esis, which says that this cardinal ity is the smallest cardinal larger 
than that of the init ial set - the cardinal successor of the one which 
measures the quanti ty of that set - is the famous 'continuum hypoth­
esis ' ,  denoted by CH in the Engl ish l iterature on the subject. 

Following P.  H. Cohen's work, we know that the continuum 
hypothesis is undecidable on the basis of the classical axioms of the 
theory. It can be affirmed or denied without any contradiction being 
introduced. 

A particularly lucid text on th is problem is K.  Godel 's  'What is 
Cantor's continuum problem ? ' .  The Engl ish text has often been 
republished since its first appearance in 1 947; for example in P. 
Benacerraf and H. Putman (eds) ,  Philosophy of Mathematics ( Cam­
bridge: Cambridge University Press, 2nd edn, 1 98 3 )  pp . 470-86 .  
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2 [dans ces parages du vague OU toute rea lite se dissout: Mallarme, 
'Coup de des', p. 1 8 1 .  - trans. ]  

3 [Ibid. - trans. ]  

4 The concept of the cut, and the way in which it specifies the relation 
between punctual intervention and the continuum of situations, 
traverses a l l  the procedures of truth. Its occurrence can be remarked 
in the poli tics of rupture ( revoutionary politics ) ,  in the a rtistic theme 
of novelty or of modernity, in the scientific theme of crises and 
refoundations, or in the amorous figure of separation. Every fidelity 
is also the process of a cut. 

S Dedekind's fundamental text on the idea of the cut, dating 
from 1 872, is 'Continuity and Irrational Numbers' [ translated in 
Dedekind, Numbers, pp. 1 -24.  - trans. ] .  

6 The exposition in Gonshor, Introduction,  begins with the demon­
stration of the fundamental theorem. His style is very different: both 
because, as I have already mentioned, Gonshor adopts a line which 
is oriented more towards calculation than towards set theory; and 
because he is not content with a proof of existence, but intends to 
determine exactly the Number that is cut (what is called a 'construc­
tive' proof) . This concern for determination entails the examination 
of a great many cases. 

7 We will see in chapter 1 6  that the upper bound of a set L, being of 
the form (WI ,  Wd, is an ordinal. This is a striking result. 

8 The lower bound of a set H is in fact the negative of an ordinal, a 
Number -(W) .  Cf. ch. 1 6 .  

9 For rule 2 ,  the reasoning is exactly symmetrical to that which vali­
dates rule 1 .  Let us take rule 3: we have Id. (W, Nb), and W is  in 
the form of Nb. I put W in the form of Ni. Am I not risking making 
it so that Ni becomes thus as large as a Number of A? Take Na to 
be this supposed Number. W must be the discriminant of Ni and 
of Na, which is to say that i t  is also the discriminant of Na and Nb. 
Now W is in the form of Nb, one must therefore have Na < Nb, 
which is not al lowed. 

The same approach can be appl ied for rule 4. 

Chapter 1 6  The Numberless Enchantment of the 
Place of Number 

1 As we have indicated in notes 7 and 8 of the preceding chapter, a 
very interesting 'topological '  characteristic of the positive and nega­
tive ordinals is that every set of Numbers has an ordinal as its upper 
bound, and the negative of an ordinal as its lower bound. This can 
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be expla ined easily enough, since every ordinal is the cut of itself 
and the void, and every negative of an ordinal,  a cut of the void 
and itself. 

2 Gonshor, Introduction,  p. 32.  

3 [encadrement. - trans . ]  

4 The principle of the i somorphism of orders - that i s ,  of the fact that, 
if  N i s  a Number of finite matter and RA(N) = r, then N l  < Nz � 
RA( N d  < RA(Nz ) - is simple enough (note that < is to the left of 
the implication in the order-relation in Numbers, to the right of the 
relation of ordinary order in the rational numbers ) .  The result is 
that, in the decomposition of N in the form 1 + 1 + . . .  - t + etc. ,  
what is  added 'at the end' decreases very rapidly. This is a quite 
s imple, normal algebraic calculation. 

5 See Gonshor, Introduction,  pp. 30-1 . 

6 One might object at this point that our Numbers do not authorise 
the representation either of complex numbers or of quaternions, 
upon which physics relies to a considerable extent. 

But are complex numbers and quaternions numbers? I think it 
can be reasonably maintained that, from the moment we take leave 
of all ' l inea rity' when we abandon dimension 1 ,  we are dealing 
with constructions based on Numbers rather than with Numbers 
per se. 

Basica lly, the innermost essence of complex numbers is geometri­
cal, it is the 'complex plane' which del ivers the truth of these 
'numbers ' .  Around the complex numbers is organised the profound 
link between pure algebra ( the extension of fields )  and the ontologi­
cal scheme of space as topological concept. I am tempted to ca l l  
complex numbers operators, operators whose function in thought 
is to articulate a lgebra and topology. Hence the simultaneously 
combinatorial (a  complex number being a pair of real numbers) and 
geometrical character of these 'numbers' .  They are in fact numbers 
which do not number, but suggest schemes of representation and 
inscription which are already, in effect, something very close to a 
conceptual  'physics' .  

Moreover, it  seems to me unreasonable to speak of 'numbers' 
when it  is not even possible, in terms of the operational field con­
s idered, to say that one 'number' is larger or smal ler than another. 
In short: a field of numbers must in my view be an ordered field, 
which neither complex numbers nor quaternions are. 

Finally, I restrict the concept of Number, in so far as i t  is thought 
of as a form of being, to that which can be deployed according to 
the intuition of a line. This is made clear by the decisive part played 
in the definition of the being of Number by that fundamental ' l ine 
of being' constituted by the ordina ls .  

7 See Robinson, Non-Standard Analysis [see ch. Sn 1 3 . - trans . ] .  
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Chapter 1 7  Natural I nterlude 

1 On the mathematical personality Ramanujan, see the great number­
theorist G.  H. Hardy's autobiographical A Mathematician 's Apology 
[Cambridge: Cambridge University Press, 1 940.  - trans . ] .  

2 On the set-theoretical reduction of relations and functions to the 
pure multiple, and for an ontological discussion of this point, see 
L 'P.tre et l 'evenement, Appendix 2, 'A relation, or a function, is 
solely a pure multiple', pp. 483-6 [pp. 443-7 in the Engl ish transla­
tion . - trans . ] .  

3 [La nature a lieu, on n 'y a;outera pas : Mallarme, 'De la musique et 
des lettres' ,  in H.  Mondor and G. Jean-Aubry (eds ) ,  Oeuvres com­
pletes ( Paris:  Ple"iade, 1 945 )  pp. 642-57. Translated as 'Music and 
Literature' ,  in B. Cook ( trans . ) ,  Mallarme: Selected Prose Poems, 
Essays and Letters ( Baltimore: Johns Hopkins Press, 1 95 6 ) ,  
pp. 43-56 ( translation modified ) .  - trans . ] .  

Chapter 1 8  Algebra of Num bers 

1 It is equally true that every set of Numbers whose matter is lower 
than or equal to a given infinite cardinal is  a commutative field. In 
this regard, Gonshor is right to say that the study of the field of 
Numbers of finite matter or equal to ro ( 'of countable length' [see 
Gonshor, Introduction,  p. 1 03 .  - trans. ] )  would be most worth­
while. This field allows real Numbers as a subset, but i t  also contains 
infinitesimals and cuts of cuts. It would be possible to develop a 
wholly original analysis here. 

2 Gonshor, Introduction, Ch. 3, 'The Basic Operations'. 

3 Take two ordinals WI and W2, where (( (WhW2» ) = W. If WI is 
maximal in the couple, every couple (WhW4) where W4 E W2 is 
smaller than the couple (W. ,W2) in the order of couples ( see 1 7.6) ,  
because they have the same Max (which is WI ! and the same first 
term (which is also W I ! ,  but the second term of the couple (WhW4) 
is smaller than the second term of (WhW2). So, (( (WhW4) E 
(((WhW2» ) ,  since ( is an isomorphism of order between couples of 
ordinals and ordinals .  

If it is Wl that is maximal, the same conclusion fol lows, since the 
Max of (W hW4) is lower. 

Similar verifications can be made for any such case. 

4 The induction in question consists of proving simultaneously: 
• that, if N2 < N3, then NI  + N2 < N I  + N3 (compatibil ity of order 

and additive structure ) ;  
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• that the Numbers of set L are al l  smaller than the Numbers of 
set H.  

5 To be real ly meticulous, we m ust take into account the case where 
L does not contain any positive Numbers, but does contain O. In 
this case, 0 is the internal maximum of L. One can take i t  as 0 
'alone', or identify L with the set ( 0 ) .  The reasoning is then much 
simplified. 

6 The reader might be perturbed by the consta nt amphibolies of nota­
tion ( the sign < used in one place for the order of Numbers, else­
where for that of this or that particular type of number, etc . )  In fact, 
mathematicians (who say in such a case ' that there is no possible 
equivocity ' )  express through such amphibolies their natural ten­
dency to identify purely and simply, and therefore to name identi­
cally, relations and operations which a re defined with isomorphic 
structures. How else could Category Theory have arisen, taking as 
its 'primitives' not multiplicities, but 'morphisms', or arrows, des­
ignating 'correspondences' between structural 'objects' ?  

Chapter 1 9  I n  Conclusion: 
From Number to Trans-Being 

1 [action restreinte: Mallarme, 'Action restreinte', in Oeuvres com­
pletes ( see ch. 1 7n 2 ) ,  pp. 369-73 . ]  

2 [ Como urn deus, nao arrumei nem uma coisa new outra: from 
Alvaro de Campos aka Fernando Pessoa's  1 929 poem 'Reticencias' .  
See F. Pessoa, edited by M .  A.  D.  Galhoz, Obra Poetica ( Rio de 
Janeiro: Aguilar, 1 960 ) .  This is a variant of his 'Quasi' (cf. Vol .  I I  
of the Edirao Critica ( lmprensa Nacional - Casa da Moeda, 1 990) ,  
p. 2 1 5 ) ,  where we read Como um deus, nao arrumei nem a verdade 
nem a vida ( 'Like a god, I arranged neither truth nor l i fe ' ) .  Badiou 
quotes A. Guibert's French translation: Tel un dieu, je n 'ai mis de 
l 'ordre ni dans l 'un ni dans l 'autre. - trans. ]  
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of ontology of Number, 145 ,  
1 53-4, 200 

union of a set, 79-80, 8 1 ,  9 1 ,  1 02 
un iqueness and the cut, 143 ,  

144-6, 1 55 ,  157  
unity, 7, 8 

Peano's s igns, 49 ,  5 1  
upper bound of ordinals, 1 1 3 ,  1 8 9,  

1 90, 208 
of a set  of Numbers, 1 44-5 

value and Number, 2 1 3-14 
Venn diagrams, 1 05 
void, 1 5 7-8 , 2 1 2  

and Evi l ,  1 6 0-1  
and inductive definition, 89 ,  91  

singletons of, 64-5, 71 ,  95  
and succession, 77 ,  84-5 , 95  
see also empty sets; zero 

von Neumann, John, 8, 1 2  
von Neumann ordinals ,  67-72, 

73 
and succession, 73,  74-5 

'wel l -ordered ness' and ordinals, 
52-8 , 6 1 , 68 ,  1 8 8,  1 94, 1 96 

whole numbers see natura l  whole 
numbers; relative whole 
numbers 

whole ordinal part of a Number, 
1 70-3 

Wittgenstein,  Ludwig, 2 1 2  

Zermelo, E .F.F . ,  8 ,  22 
Axiom of Separation, 20-1 , 43 

zero, 7-8 , 1 3- 1 5  
a n d  axiom of the empty sets, 

44 
and being, 25, 56-7 
and belonging and incl usion, 

63-5 
Dedekind and Frege on, 14 ,  40, 

44 
discriminant, 1 5 8-9 
existence of, 22-3 , 56-7 
Frege and concept of zero, 

1 8-1 9, 22, 25-30,  40, 55  
and infinitesimal numbers, 

1 78-9 
lack and function of zero, 26,  

28 ,  34 
as neutra l element for add ition, 

204-5 
as Number, 1 5 7-8 
ordinals  and wel l -ordered sets, 

55 
and Peano's axioms, 50, 5 1  
and positive and negative 

Numbers, 1 5 8-6 1 
see also empty sets; void 
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